Narrow-band Frequency Modulation

KEEE343 Communication Theory Lecture \# I 6, May 3, 20 I I

Prof.Young-Chai Ko koyc@korea.ac.kr

Summary

- Narrowband Frequency Modulation
- Wideband Frequency Modulation

Narrow-Band Frequency Modulation

- Narrow-Band FM means that the FM modulated wave has narrow bandwidth.
- Consider the single-tone wave as a message signal:

$$
m(t)=A_{m} \cos \left(2 \pi f_{m} t\right)
$$

- FM signal
- Instantaneous frequency

$$
\begin{aligned}
f_{i}(t) & =f_{c}+k_{f} A_{m} \cos \left(2 \pi f_{m} t\right) \\
& =f_{c}+\Delta f \cos \left(2 \pi f_{m} t\right)
\end{aligned} \quad \Delta f=k_{f} A_{m}
$$

- Phase

$$
\begin{aligned}
\theta_{i}(t) & =2 \pi \int_{0}^{t} f_{i}(\tau) d \tau=2 \pi\left[f_{c} t+\frac{\Delta f}{2 \pi f_{m}} \sin \left(2 \pi f_{m} t\right)\right] \\
& =2 \pi f_{c} t+\frac{\Delta f}{f_{m}} \sin \left(2 \pi f_{m} t\right)
\end{aligned}
$$

- Definitions
- Phase deviation of the FM wave $\beta=\frac{\Delta f}{f_{m}}$
- Modulation index of the FM wave: f_{m}
- Then, FM wave is

$$
\begin{gathered}
s(t)=A_{c} \cos \left[2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right] \\
\downarrow(t)=A_{c} \cos \left(2 \pi f_{c} t\right) \cos \left(\beta \sin \left(2 \pi f_{m} t\right)\right)-A_{c} \sin \left(2 \pi f_{c} t\right) \sin \left(\beta \sin \left(2 \pi f_{m} t\right)\right)
\end{gathered}
$$

- To be narrow-band FM, β should be small.
- For small β compared to I radian, we can rewrite

$$
\begin{aligned}
& \cos \left[\beta \sin \left(2 \pi f_{m} t\right)\right] \approx 1, \quad \sin \left[\beta \sin \left(2 \pi f_{m} t\right)\right] \approx \beta \sin \left(2 \pi f_{m} t\right) \\
& s(t) \approx A_{c} \cos \left(2 \pi f_{c} t\right)-\beta A_{c} \sin \left(2 \pi f_{c} t\right) \sin \left(2 \pi f_{m} t\right)
\end{aligned}
$$

Figure 4.4 Block diagram of an indirect method for generating a narrow-band FM wave.
[Ref: Haykin \& Moher, Textbook]

Polar Representation from Cartesian

- Consider the modulated signal

$$
s(t)=a(t) \cos \left(2 \pi f_{c} t+\phi(t)\right)
$$

which can be rewritten as

$$
s(t)=s_{I}(t) \cos \left(2 \pi f_{c} t\right)-s_{Q}(t) \sin \left(2 \pi f_{c} t\right)
$$

where

$$
s_{I}(t)=a(t) \cos (\phi(t)), \quad \text { and }, \quad s_{Q}(t)=a(t) \sin (\phi(t))
$$

and

$$
a(t)=\left[s_{I}^{2}(t)+s_{Q}^{2}(t)\right]^{\frac{1}{2}}, \quad \text { and } \quad \phi(t)=\tan ^{-1}\left[\frac{s_{Q}(t)}{s_{I}(t)}\right]
$$

- Approximated narrow-band FM signal can be written as

$$
s(t) \approx A_{c} \cos \left(2 \pi f_{c} t\right)-\beta A_{c} \sin \left(2 \pi f_{c} t\right) \sin \left(2 \pi f_{m} t\right)
$$

- Envelope

$$
a(t)=A_{c}\left[1+\beta^{2} \sin ^{2}\left(2 \pi f_{m} t\right)\right] \approx A_{c}\left(1+\frac{1}{2} \beta^{2} \sin ^{2}\left(2 \pi f_{m} t\right)\right)
$$

- Maximum value of the envelope

$$
A_{\max }=A_{c}\left(1+\frac{1}{2} \beta^{2}\right)
$$

- Minimum value of the envelope

$$
A_{\min }=A_{c}
$$

- The ratio of the maximum to minimum value

$$
\frac{A_{\max }}{A_{\min }}=\left(1+\frac{1}{2} \beta^{2}\right)
$$

- Rewriting the approximated narrow-band FM wave is
$s(t) \approx A_{c} \cos \left(2 \pi f_{c} t\right)+\frac{1}{2} \beta \cos \left(2 \pi\left(f_{c}+f_{m}\right) t\right)-\frac{1}{2} \beta A_{c} \cos \left(2 \pi\left(f_{c}-f_{m}\right) t\right)$
- Average power

$$
P_{\mathrm{av}}=\frac{1}{2} A_{c}^{2}+\left(\frac{1}{2} \beta A_{c}\right)^{2}+\left(\frac{1}{2} \beta A_{c}\right)^{2}=\frac{1}{2} A_{c}^{2}\left(1+\beta^{2}\right)
$$

- Average power of the unmodulated wave

$$
P_{c}=\frac{1}{2} A_{c}^{2}
$$

- Ration of the average power to the power of the unmodulated wave

$$
\frac{P_{\mathrm{av}}}{P_{c}}=1+\beta^{2}
$$

- Comparison with the AM signal
- Approximated Narrow-band FM signal
$s(t) \approx A_{c} \cos \left(2 \pi f_{c} t\right)+\frac{1}{2} \beta \cos \left(2 \pi\left(f_{c}+f_{m}\right) t\right)$
\quad •AM signal
$s_{\mathrm{AM}}(t)=A_{c} \cos \left(2 \pi f_{c} t\right)+\frac{1}{2} \mu A_{c}\left\{\cos \left[2 \pi\left(f_{c}+f_{m}\right) t\right)+\cos \left[2 \pi\left(f_{c}-f_{m}\right) t\right]\right\}$
difference between the narrow-band FM and AM waves
- Bandwidth of the narrow-band FM: $2 f_{m}$
- Phasor interpretation

(a)

(b)

Figure 4.5 Phasor comparison of narrow-band FM and AM waves for sinusoidal modulation. (a) Narrow-band FM wave. (b) AM wave.

- Angle

$$
\theta(t)=2 \pi f_{c} t+\phi(t)=2 \pi f_{c} t+\tan ^{-1}\left(\beta \sin \left(2 \pi f_{m} t\right)\right)
$$

- Using the power series of the tangent function such as

$$
\tan ^{-1}(x) \approx x-\frac{1}{3} x^{3}+\cdots
$$

- Angle can be approximated as

$$
\theta(t) \approx 2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)-\frac{1}{3} \beta^{3} \sin ^{3}\left(2 \pi f_{m} t\right)
$$

- Ideally, we should have

$$
\theta(t) \approx 2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)
$$

- The harmonic distortion value is

$$
D(t)=\frac{\beta^{3}}{3} \sin ^{3}\left(2 \pi f_{m} t\right)
$$

- The maximum absolute value of $D(t)$ is

$$
D_{\max }=\frac{\beta^{3}}{3}
$$

- For example for $\beta=0.3$,

$$
D_{\max }=\frac{0.3^{3}}{3}=0.009 \approx 1 \%
$$

which is small enough for it to be ignored in practice.

Amplitude Distortion of Narrow-band FM

- Ideally, FM wave has a constant envelope
- But, the modulated wave produced by the narrow-band FM differ from this ideal condition in two fundamental respects:
- The envelope contains a residual amplitude modulation that varies with time
- The angle $\theta_{i}(t)$ contains harmonic distortion in the form of thirdand higher order harmonics of the modulation frequency f_{m}

Wide-Band Frequency Modulation

- Spectral analysis of the wide-band FM wave

$$
s(t)=A_{c} \cos \left[2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right]
$$

or

$$
s(t)=\Re\left[A_{c} \exp \left[j 2 \pi f_{c} t+j \beta \sin \left(2 \pi f_{m} t\right)\right]\right]=\Re\left[\tilde{s}(t) \exp \left(j 2 \pi f_{c} t\right)\right]
$$

where $\tilde{s}(t)=A_{c} \exp \left[j \beta \sin \left(2 \pi f_{m} t\right)\right]$ is called "complex envelope".
Note that the complex envelope is a periodic function of time with a fundamental frequency f_{m} which means
where $\quad T_{m}=1 / f_{m}$

$$
\tilde{s}(t)=\tilde{s}\left(t+k T_{m}\right)=\tilde{s}\left(t+\frac{k}{f_{m}}\right)
$$

- Then we can rewrite

$$
\begin{aligned}
\tilde{s}(t) & =\tilde{s}\left(t+k / f_{m}\right) \\
& =A_{c} \exp \left[j \beta \sin \left(2 \pi f_{m}\left(t+k / f_{m}\right)\right)\right] \\
& =A_{c} \exp \left[j \beta \sin \left(2 \pi f_{m} t+2 k \pi\right)\right] \\
& =A_{c} \exp \left[j \beta \sin \left(2 \pi f_{m} t\right)\right]
\end{aligned}
$$

- Fourier series form

$$
\tilde{s}(t)=\sum_{n=-\infty}^{\infty} c_{n} \exp \left(j 2 \pi n f_{m} t\right)
$$

where

$$
\begin{aligned}
c_{n} & =f_{m} \int_{-1 /\left(2 f_{m}\right)}^{1 /\left(2 f_{m}\right)} \tilde{s}(t) \exp \left(-j 2 \pi n f_{m} t\right) d t \\
& =f_{m} A_{c} \int_{-1 /\left(2 f_{m}\right)}^{1 /\left(2 f_{m}\right)} \exp \left[j \beta \sin \left(2 \pi f_{m} t\right)-j 2 \pi n f_{m} t\right] d t
\end{aligned}
$$

- Define the new variable: $x=2 \pi f_{m} t$

Then we can rewrite

$$
c_{n}=\frac{A_{c}}{2 \pi} \int_{-\pi}^{\pi} \exp [j(\beta \sin x-n x)] d x
$$

- nth order Bessel function of the first kind and argument β

$$
J_{n}(\beta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp [j(\beta \sin x-n x)] d x
$$

- Accordingly

$$
c_{n}=A_{c} J_{n}(\beta)
$$

which gives

$$
\tilde{s}(t)=A_{c} \sum_{n=-\infty}^{\infty} J_{n}(\beta) \exp \left(j 2 \pi n f_{m} t\right)
$$

- Then the FM wave can be written as

$$
\begin{aligned}
s(t) & =\Re\left[\tilde{s}(t) \exp \left(j 2 \pi f_{c} t\right)\right] \\
& =\Re\left[A_{c} \sum_{n=-\infty}^{\infty} J_{n}(\beta) \exp \left[j 2 \pi n\left(f_{c}+f_{m}\right) t\right]\right] \\
& =A_{c} \sum_{n=-\infty}^{\infty} J_{n}(\beta) \cos \left[2 \pi\left(f_{c}+n f_{m}\right) t\right]
\end{aligned}
$$

- Fourier transform

$$
S(f)=\frac{A_{c}}{2} \sum_{n=-\infty}^{\infty} J_{n}(\beta)\left[\delta\left(f-f_{c}-n f_{m}\right)+\delta\left(f+f_{c}+n f_{m}\right)\right]
$$

which shows that the spectrum consists of an infinite number of delta functions spaced at $f=f_{c} \pm n f_{m}$ for $n=0,+1,+2, \ldots$

Properties of Single-Tone FM for Arbitrary Modulation Index β

1. For different values of \mathbf{n}

$$
\begin{array}{ll}
J_{n}(\beta)=J_{-n}(\beta), & \\
\text { for } n \text { even } \\
J_{n}(\beta)=-J_{-n}(\beta), & \\
\text { for } n \text { odd }
\end{array}
$$

2. For small value of β

$$
\begin{aligned}
J_{0}(\beta) & \approx 1 \\
J_{1}(\beta) & \approx \frac{\beta}{2} \\
J_{n}(\beta) & \approx 0, \quad n>2
\end{aligned}
$$

6. The equality holds exactly for arbitrary β

$$
\sum_{n=-\infty}^{\infty} J_{n}^{2}(\beta)=1
$$

Figure 4.6 Plots of the Bessel function of the first kind, $J_{n}(\beta)$, for varying order n.
I. The spectrum of an FM wave contains a carrier component and and an infinite set of side frequencies located symmetrically on either side of the carrier at frequency separations of $f_{m}, 2 f_{m}, 3 f_{m} \ldots$
2. The FM wave is effectively composed of a carrier and a single pair of sidefrequencies at $f_{c} \pm f_{m}$.
3. The amplitude of the carrier component of an FM wave is dependent on the modulation index β. The averate power of such as signal developed across a Iohm resistor is also constant:

$$
P_{\mathrm{av}}=\frac{1}{2} A_{c}^{2}
$$

The average power of an FM wave may also be determined from

$$
P_{\mathrm{av}}=\frac{1}{2} A_{c}^{2} \sum_{n=-\infty}^{\infty} J_{n}^{2}(\beta)
$$

