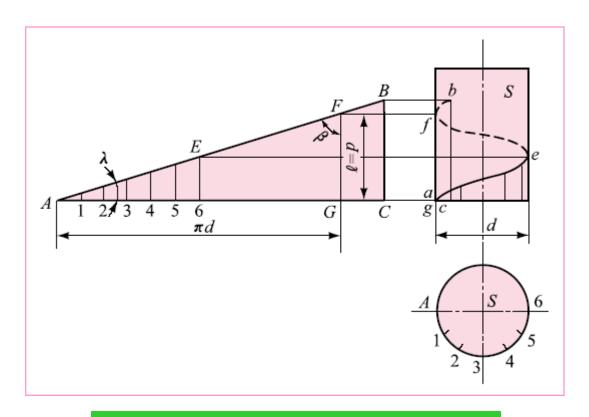

# Chapter 02 나 사

자료제공: 학진북스-김남용저


## 2-1 ≫ 나사의 기본사항



<그림 2-1> 결합법의 종류

#### [1. 나사의 정의]

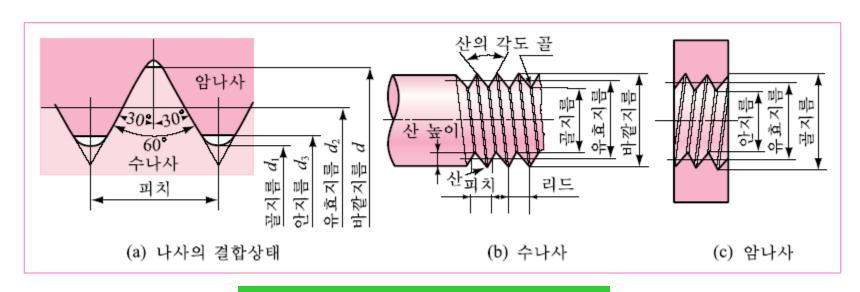
- 나사(screw thread): 나선(helix) 곡선을 따라 원주면 위에 삼각, 사각 등의 홈을 파면, 산과 골로 된 입체
- 리드(lead): 나사를 1회전하여 축방향으로 진행한 거리
- 리드각(lead angle): λ는 나선의 경사를 표시
- 나선각(helix angle) : β



<그림 2-2> 나선과 나사산의 형성

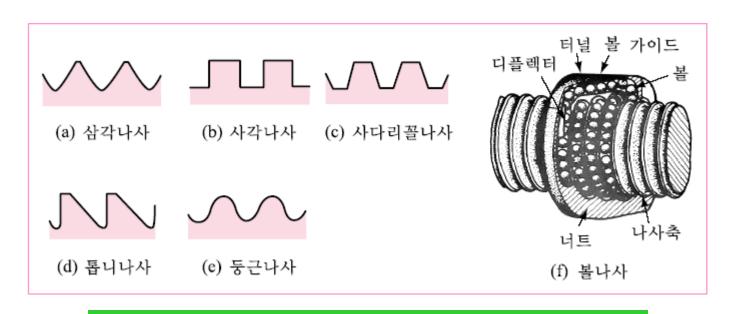
■ 피치(pitch) : 산과 산, 골과 골 사이의 거리

$$\tan \lambda = \frac{p}{\pi d} \tag{2.1}$$


$$\ell = \pi d \cdot \tan \lambda$$

$$\ell = np \tag{2 \cdot 2}$$

• 한줄나사(single screw thread) :  $\ell = p$ 


### 2. 나사 각부의 명칭

- ① 바깥지름(d): 수나사의 축에 직각으로 측정한 최대지름
  - 미터나사의 크기: 수나사의 바깥지름으로 표시(공칭지름)
- ② 골지름 $(d_1)$ : 수나사 ⇒ 최소지름, 암나사 ⇒ 최대지름
- ③ 안지름 $(d_3)$ : 암나사의 최소지름
- ④ 유효지름 $(d_2)$ : 바깥지름과 골지름의 평균지름  $(d+d_1)/2$
- ⑤ 나사산각(α): 서로 인접한 2개의 플랭크가 만드는 각
- ⑥ 플랭크각(α/2) :플랭크와 축 중심선과 직각인 단면과 이루는 각 → 나사산각의 반각(半角)
  - 플랭크(flank): 나사면을 말하며, 나사의 봉우리와 나사골을 연결하는 나사산의 경사면



<그림 2-3> 나사 각부의 명칭

- 나사산의 모양에 의한 분류
  - 삼각나사(triangular screw thread)
  - 사각나사(square screw hread)
  - 사다리꼴나사(trapezoidal screw, acme screw thread),
  - 톱니나사(buttress screw thread)
  - 둥근나사(round screw thread, knuckle screw thread)
  - 볼나사(ball thread)



<그림 2-4> 나사산의 모양에 따른 나사의 분류

- 기준치수의 단위에 의한 분류
  - 미터나사(metric screw thread)
  - 인치나사(inch screw thread)
- 나사의 회전방향에 의한 분류
  - 오른나사(right hand screw)
  - 왼나사(left hand screw)

### 2-2 ≫ 나사의 표시방법과 등급

#### 1. 나사의 표시방법

(나사산의 감김 방향) (나사산의 줄수) (나사의 호칭) - (나사의 등급)

- 나사산의 감김방향 : 왼나사의 경우 "좌" 또는 "L"로 표시, 오 른나사의 경우 생략
- 나사산의 줄수 : 두줄 나사의 경우 "2줄" 또는 "2N", 세줄나사의 경우 "3줄" 또는 "3N"으로 표시, 한줄 나사의 경우 생략
- 나사의 호칭 : 나사의 종류에 따른 호칭 방법을 따른다.
- 나사의 등급 : 공차의 위치 및 IT등급을 표시

#### (1) 피치를 [mm]로 표시하는 나사의 경우

(나사 종류의 표시기호) (나사산의 호칭지름의 표시 숫자) × (피치)

## (2) 피치를 산수로 표시하는 나사의 경우 (유니파이 나사 제외)

(나사 종류의 표시기호) (나사산의 호칭지름의 표시 숫자) 산(1" 마다 나사산의 수)

■ 관용(管用)나사와 같이 동일 지름에 대해 산의 수가 하나만 규정되어 있을 때 산의 수를 생략 한다. 또한 혼동의 우려가 없을 때는 "산" 대신 "-"을 사용

#### (3) 유니파이 나사의 경우

(나사산의 호칭지름의 표시 숫자 또는 번호) - (1" 마다 나사산의 수) (나사 종류의 표시 기호) <표 2-1> 나사의 종류 및 표시 기호 (KS B 0200)

| 구 | 분                  | 나사의 종류            |         | 나사 종류의<br>표시 기호 | 나사 호칭의<br>표시 방법 | 관련 규격              | 요약 및 용도                                         |  |  |
|---|--------------------|-------------------|---------|-----------------|-----------------|--------------------|-------------------------------------------------|--|--|
|   | ISO<br>규격에 있는 것    | 미터 보통나사           |         | M               | M 8             | KS B 0201          | 가장 일반적인 나사, 고<br>치 생략 가능                        |  |  |
|   |                    | 미터 가는나사           |         | 1V1             | M 8×1           | KS B 0204          | 보통나사보다 피치가 직음, 피치 표기 필수                         |  |  |
|   |                    | 미니추어 나사           |         | S               | S 0.5           | KS B 0228          | 지름 1 [mm] 이하의 나사                                |  |  |
|   |                    | 유니파이 보통나사         |         | UNC             | 3/8 – 16 UNC    | KS B 0203          | 인치계의 삼각나사<br>피치:1인치에 대한 나사                      |  |  |
|   |                    | 유니파이 가는나사         |         | UNF             | No.8 - 36 UNF   | KS B 0206          | 산 수, C:보통나사, F:<br>가는나사                         |  |  |
|   |                    | 미터 사다리꼴 나사        |         | Tr              | Tr 10×2         | KS B 0229<br>의 본문  | 운동용 나사, 나사산 각<br>도 30°                          |  |  |
| 일 |                    | 관용<br>테이퍼<br>나사   | 테이퍼 수나사 | 베이퍼 수나사 R       |                 |                    | 수도관, 가스관 등의 기                                   |  |  |
| 반 |                    |                   | 테이퍼 암나사 | Rc              | Rc 3/4          | KS B 0222<br>의 본문  | 밀용 나사<br>피치:1인치에 대한 나<br>사산 수                   |  |  |
| 용 |                    |                   | 평행 암나사  | Rp              | Rp 3/4          | ,                  |                                                 |  |  |
|   |                    | 관용 평행나사           |         | G               | G 1/2           | KS B 0221<br>의 본문  | 관의 기계적 결합용 나서 미터 가는나사보다 피기가 작음. 피치:1인치여대한 나사산 수 |  |  |
|   | ISO<br>규격에 없는<br>것 | 29° 사다리꼴 나사       |         | TW              | TW 20           | KS B 0226          | 운동용 나사, 기밀 유지용<br>나사, 인치계 나사, 사각<br>나사보다 강도가 큼  |  |  |
|   |                    | 관용<br>테이퍼         | 테이퍼 나사  | PT              | PT 7            | KS B 0222          | 기밀 유지용 나사<br>ISO와 같이 사용                         |  |  |
|   |                    | "<br>나사           | 평행 암나사  | PS              | PS 7            | 의 부속서              | PT : 수나사, PS : 암나사                              |  |  |
|   |                    | 관용 평행나사           |         | PF              | PF 7            | KS B 0221          | ISO와 같이 사용, PF 표시                               |  |  |
|   |                    | 후강 전선관 나사         |         | CTG             | CTG 16          | KS B 0223          |                                                 |  |  |
|   |                    | 박강 전선관 나사         |         | CTC             | CTC 19          | KS B 0223          |                                                 |  |  |
|   |                    | 자전거               | 일 반 용   | ВС              | BC 3/4          | KS B 0224          |                                                 |  |  |
|   |                    | 나사                | 스포크용    | ъс              | BC 2.6          |                    |                                                 |  |  |
| 특 | 수용                 | 미싱 나사             |         | SM              | SM 1/4 산 40     | <del> </del>       | 나사의 종류에 부합한                                     |  |  |
|   |                    | 전구 나사             |         | E               | E 10            | KS C 7702          | -                                               |  |  |
|   |                    | 자동차용 타이어 밸브<br>나사 |         | TV              | TV 8            | KS R 4006<br>의 부속서 |                                                 |  |  |
|   |                    | 자전거용 타이어 밸브<br>나사 |         | CTV             | CTV 8 산 30      | KS R 8044<br>의 부속서 |                                                 |  |  |

#### <표 2-2> 나사의 정밀도 등급 및 끼워맞춤(KS B 0214)

| 등급       | 미터 | 유니파 | 이 나사                                                         | 끼워맞춤                           | 적용 범위                                                                                                        | 사다리꼴나사 |     | 관용평행나사 |     |
|----------|----|-----|--------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------|--------|-----|--------|-----|
| 구분       | 나사 | 수나사 | 암나사                                                          | (암나사/수나사)                      | 작용 임취                                                                                                        | 수나사    | 암나사 | 수나사    | 암나사 |
| 정밀<br>등급 | 1급 | 3A  | 3B                                                           | 4H/4h(M1.4이하)<br>5H/4h(M1.6이상) | 놀음이 적은 매우 정밀<br>한 나사                                                                                         | _      | _   |        |     |
| 보통<br>등급 | 2급 | 2A  | 2A 2B 5H/6h(M1.4이하) 기계, 기기, 구조체 등에 6H/6g(M1.6이상) 사용하는 일반용 나사 |                                |                                                                                                              | 7H     | 7e  |        |     |
| 거친<br>등급 | 3급 | 1A  | 1В                                                           | 7H/8g                          | 건설공사 등과 같이 오<br>염되기 쉬운 환경에 사<br>용되는 나사, 열간 압연<br>봉에 나사깎기 또는 관<br>통하지 않는 긴 구멍에<br>나사내기 등과 같이 나<br>사가공이 곤란한 경우 | 8Н     | 8e  | A      | В   |

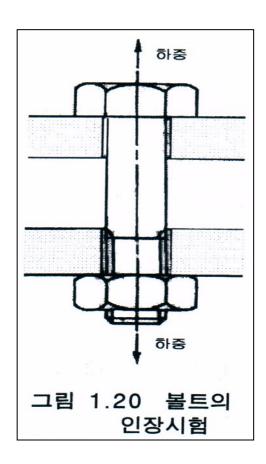
#### <표 2-3> 미터나사의 등급 선택기준[암나사](KS B 0235)

| 공차 위치   | -         | Н        |           | G       |          |        |  |
|---------|-----------|----------|-----------|---------|----------|--------|--|
| 끼워맞춤 길이 | S         | N        | L         | S       | N        | L      |  |
| 끼워맞춤 구분 | (short)   | (normal) | (long)    | (short) | (normal) | (long) |  |
| 상(정밀등급) | 4H        | 5H       | 6H        | _       | _        | _      |  |
| 중(보통등급) | <u>5H</u> | [6H]     | <u>7H</u> | (5G)    | (6G)     | (7G)   |  |
| 하(거친등급) | _         | 7H       | 8H        | _       | (7G)     | (8G)   |  |

- 【주】1. 밑줄(-) 그은 문자로 표시된 등급을 1차, 밑줄이 없는 문자로 표시된 등급을 2차로 선택한다.
   ( ) 안의 등급은 3차 선택으로서 되도록 선택하지 않는다.
  - 2. 너트류에 대해서는 [ ]안의 등급을 우선적으로 선택한다.
- 【비고】  $N: N_{\min} = 2.24 pd^{0.2}, \ N_{\max} = 6.7 pd^{0.2}, \ S \leq N_{\min}, \ L \geq N_{\max}, \ p:$  나사의 피치, d: 바깥지름

#### <표 2-4> 미터나사의 등급 선택기준[수나사](KS B 0235)

| 공차 위치   | !<br> <br> | h         |         | g       |      |         | е |           |         |
|---------|------------|-----------|---------|---------|------|---------|---|-----------|---------|
| 끼워맞춤 길이 |            | N.        | L       | S       | N    | L       | S | N         | L       |
| 끼워맞춤 구분 | 5          | N         |         |         |      |         |   |           |         |
| 상(정밀등급) | (3h 4h)    | <u>4h</u> | (5h 4h) | _       | _    | _       | _ | _         | _       |
| 중(보통등급) | (5h 6h)    | 6h        | (7h 6h) | (5g 6g) | [6g] | (7g 6g) | _ | <u>6e</u> | (7e 6e) |
| 하(거친등급) | _          | _         | _       | _       | 8g   | (9g 8g) |   | _         | _       |


- 【주】1. 밑줄(-) 그은 문자로 표시된 등급을 1차, 밑줄이 없는 문자로 표시된 등급을 2차로 선택한다.( ) 안의 등급은 3차 선택으로서 되도록 선택하지 않는다.
  - 2. 볼트 및 소나사류에 대해서는 [ ]안의 등급을 우선적으로 선택한다.
- 【비고】 5g 6g : 수나사의 유효지름에 대한 등급은 5g, 바깥지름에 대한 등급은 6g의 경우

### 1. 11. 3 기계적성질

- 체결력을 감당하는 나사 부품의 주체는 볼트이므로 규격에서도 주로 수나사의 강도와 관련한 기계적 성질에 대하여 규정하고 있다
- 기계적 성질을 대상으로 하는 항목
  - ① 인장강도 ② 경도 ③ 항복점 또는 내력 ④ 보증하중
  - ⑤ 신장도(연신율) ⑥ 쐐기인장강도 ⑦ 충격강도 ⑧ 두부타격강도
  - ⑨ 나사부의 탈탄 및 비탈탄
- 너트의 시험 대상 항목
  - ① 보증하중 ② 강도

#### 인장시험(tensile test)

- 인장시험기를 사용하여 볼트세트에 적절한 인장하중을 부여-> 하중을 증가시켜 볼트를 파단 시킴
- 주로 볼트와 너트가 물리기 시작하는제 1 나사부에서 파단이 발생
- 인장강도는 파단하중을 나사부 유효 단면적으로 나눈 값



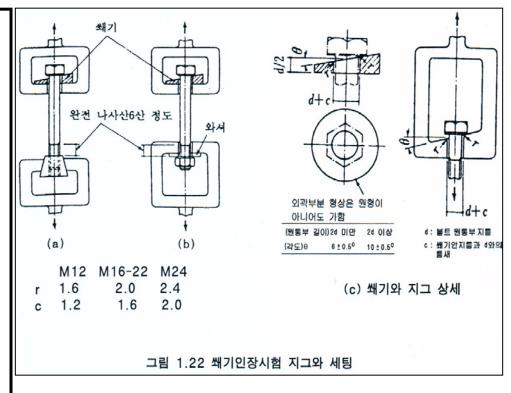
#### 경도시험(hardness test)

- KS규격에서는 브리넬(H<sub>B</sub>)경도계나 로크웰(H<sub>R</sub>)경도계를 사용하도록 규정
- 브리넬경도계는 시편의 표면에 일정하중으로 압입시켜 패어 들어간 자 국의 면적을 구함
- 로크웰경도계는 다이아몬드 원추를 압입시켜 들어간 깊이를 측정
- 볼트 경도는 측정하는 위치에 따라 그 값이 달라짐
- 긴 볼트에서는 미동변형으로 인하여 일정한 값을 얻기 어려우므로 볼
   트 머리 6각 측면을 이용한다.

#### 항복점과 내력(yield point and strength)

- 시편에 가해지는 하중을 원래의 단면적으로 나눈 공칭응력을 세로축에 그리고 시편의 변형량을 원래의 길이로 나눈 변형도를 가로축에 나타 내면 응력-변형도 선도가 된다
- 재료가 연강, 경강 합금강 등 그 기계적 성질이 다르면 이 선도의 모양 도 달라짐
- 응력과 변형률간에 선형적인 비례관계가 유지 후 한계점을 지나면 비선 형 관계를 보임
- 선형비례관계의 직선 어느 위치에서 하중을 제거하여도 원래의 상태인 변형도가 0인 위치로 되돌아가는데 이러한 성질이 바로 탄성이다
- 반대로 하중을 제거하여도 원래의 상태로 돌아가지 않는 항복 변형이 일어나며 항복이 일어나기 시작할 때의 응력이 항복점이다.
- 항복점이 명확하지 않는 경우 0.2%영구변형(잔류변형)을 일으키는 응 력점을 내력점 또는 내력이라 한다

#### 보증하중시험(proof load test)


- 볼트, 너트 세트를 인장시험시에 걸고 규격에서 설정한 하중(보증하중)
   을 15초간 유지한 후 시험전과 비교하여 늘어난 량을 측정
- 보증하중은 항복점의 약 90%로 설정되어 있음
- 응력과 변형률간에 선형적인 비례관계가 유지 후 한계점을 지나면 비 선형 관계를 보임
- 보증하중시험에서 합격은 하중을 걸기 전과 후에 차이가 12.5µm이내 이고 길이가 측정정밀도 ± 5µm로 정하고 있음
- 반대로 하중을 제거하여도 원래의 상태로 돌아가지 않는 항복 변형이 일어나며 항복이 일어나기 시작할 때의 응력이 항복점이다.
- 항복점이 명확하지 않는 경우 0.2%영구변형(잔류변형)을 일으키는 응력점을 내력점 또는 내력이라 한다

### 연신율(elongation)

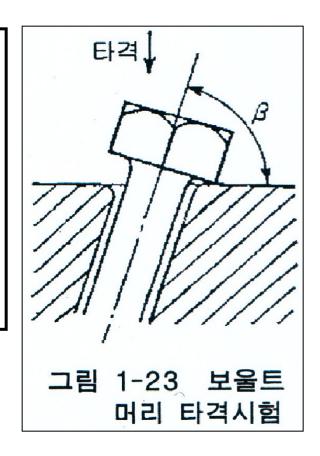
- KS B 0801-1981(금속재료 인장시험편)에 따른 시험편과 KS B 0802-1983(금속재료 인장시험방법) 및 KS B 5521-1992(인장시험기)에 의거 시편이 늘어난 길이(신장)을 측정한다
- 표준 인장시편은 평행부에 지름 5배에 해당하는 길이를 두개의 표점으로 표시하고 하중증가에 따라 이 표점거리의 변화를 측정하여 신장값으로 하고 이를 원래의 표점거리로 나눈 값이 연신율(인장변형도)이며 이 값에 100을 곱한 것이 %로 표시된 연신율 이다.

#### 쐐기인장시험(wedge tensile test)

- 볼트 머리부의 자리면에 볼트 호칭과 길이에 길이에 따라 4°,6°,10°의 쐐기를 대 고 인장시험시와 같이 인 장시험기로 하중을 가한다
- 쐐기 없을 때 최저 인장강도 내에서는 파괴되지 않고 이 보다 큰 하중에서 파괴되었 을 때 머리부와 축부의 연 결부분인 목 밑 둥근부에서 끊어지지 않아야 합격으로 한다

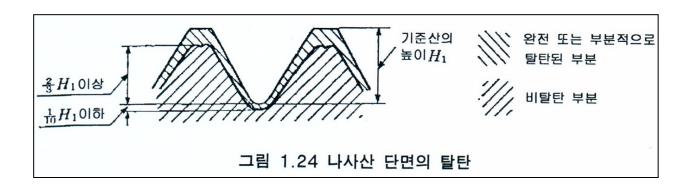


#### 전단시험(shearing test)


- 금속재료의 전단강도는 보통 인장강도의 60~70% 정도로 규정
- KS에서는 인장시험을 사용하는 시험만 규정하고 있고 전단시험에 대하여는 별도로 지정하지 않고 있으나 경우에 따라 전단강도가 볼트의 내력을 좌우하는 인자가 되는 경우 전단시험을 할 필요가 있음
- 1면 전단 또는 2면 전단 형태의 지그를 사용하고 전단에 의하여 볼트를 절단한다. 2면 전단인 경우 전단 면적은 1면 전단의 2배가 된다

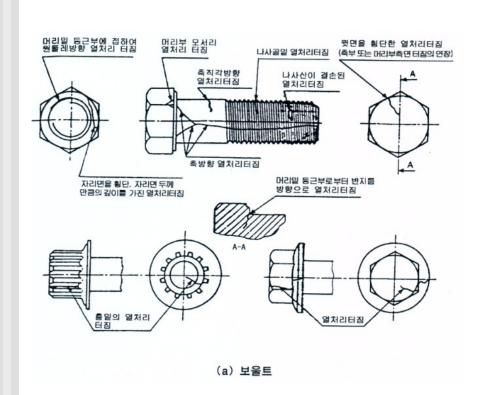
### 충격시험(impact test)

- KS B 0809-1980(금속재료 충격시험편)에 규정된 충격 시험편은 호칭지름 16mm미만의 볼트에서는 잘라내기 곤란하다. 지금 16mm 볼트에서는 10mm 각봉 형태의 시편 절단이 가능하다.
- 볼트축에 평행하게 10mm각의 시험편을 깎아내고 중심부군에 U형의 홈을 새겨 넣는다. 이 홈의 등쪽을 망치로 들어올려서 내려치는 샤르 피(Charpy)시험기로 충격 강도를 조사한다.
- 충격치는 저온에서 사용되는 기계류에서 사용하는 나사 또는 한냉지에 서 사용할 대 특히 중요한 의미를 지닌다.(저온에서 강재는 취성을 띔)


### 머리부 타격 시험(head impact test)

- β=60° 또는 80°의 기울기를 가진 구멍에 볼트를 끼우고 머리가 수평하게 될 때까지 망치로 머리부레 타격을 가하여 목밑 둥근부가 갈라지거나 균열이 발생하였는지 여부를 조사
- 인성을 시험하는 간단하고 유효한 방법이 기는 하나 굵은 볼트에는 적용이 곤란하다.




#### 탈탄시험(decarburization test)

- KS D 0216-1985(강의 탈탄층 깊이 측정방법)에서는 이 탈탄층의 깊이를 측정하는 시험방법을 규정하고 있다
- 탈탄된 표피부분이 나사산이 되었을 경우 볼트의 나사부분이 탈탄으로 인하여 열처리 효과를 충분히 얻지 못하고 약해지므로 볼트의 나사산의 파손에 의한 사고 위험이 있다.
- 퀜칭-템퍼링으로 열처리 하는 조질 볼트에서는 탈탄검사가 의무화
- 선재 블랭크를 헤더에 보내기 전과 열처리한 볼트를 중심축에 따라 세로로 자르고 절단면을 연마/부식시켜 현미경으로 보거나 마이크 로 비커스 경도계로 경도를 측정하여 탈탄여부 검사

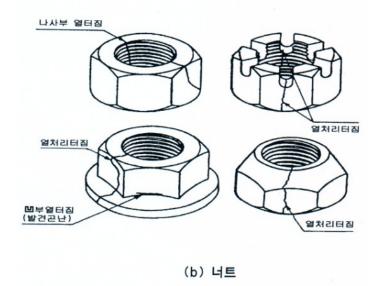
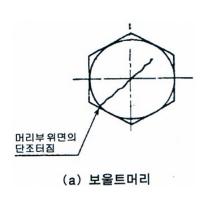
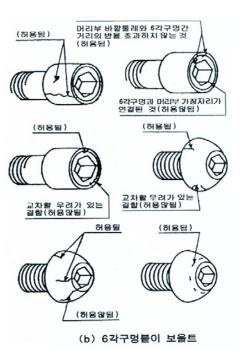


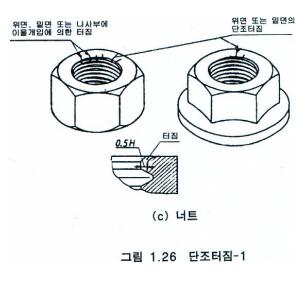
#### 1) 열처리 터짐

- 과도한 열응력 및 상변태응력에 따라 담금질시 발생
- 통상 나사부품의 표면을 불규칙한 경로로 진행

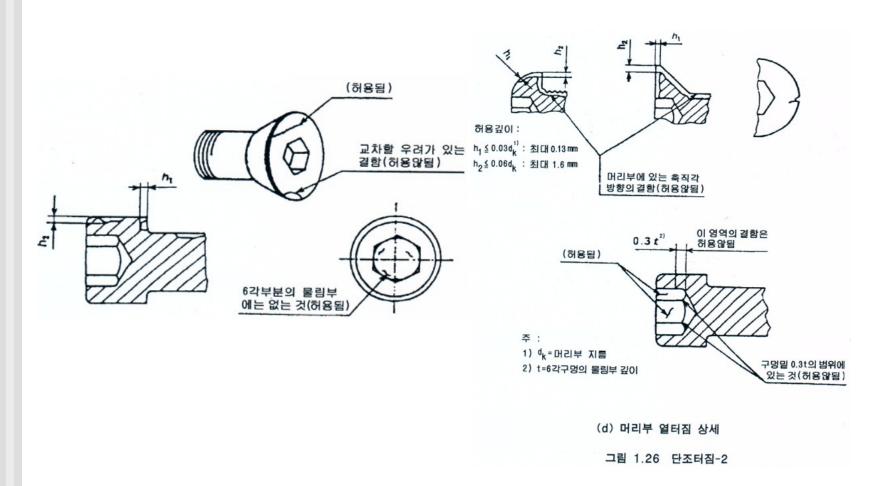


(a) 보울트

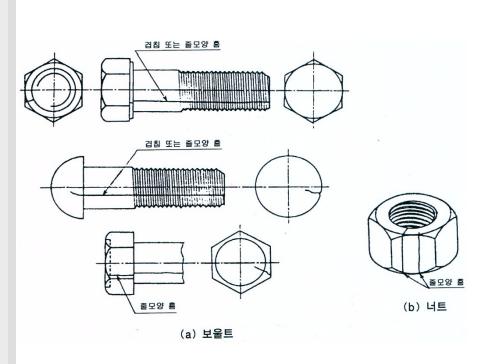


그림 1.25 열처리 터짐

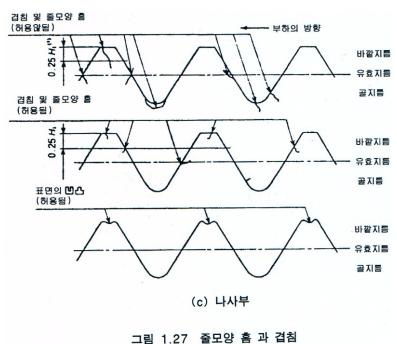
#### 2) 단조터짐


- 절단 또는 단조시 발생
- 보울트의 머리부 윗면 가장자리로부터 발생
- 너트의 윗면, 밑면 및 측면이 교차하는 부위에 위치









#### 2) 단조터짐



#### 3) 줄모양 흠 및 겹침

- 보울트에서 나사부, 축부 또는 머리부를 축방향으로 긋는
   통상 가는 직선형 또는 곡선형의 결함
- 너트에서 재료가 용착되지 않고 겹친 주름모양의 표면결함을 말함





#### 4) 파열 홈

#### - 너트에서 금속의 표면에 있는 개구부 모양의 홈

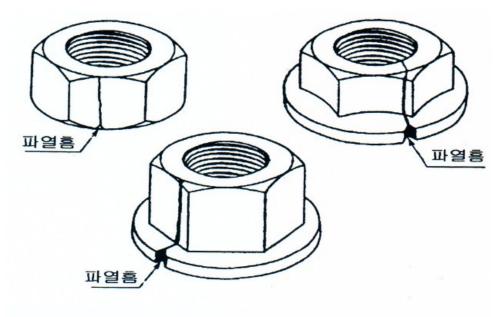
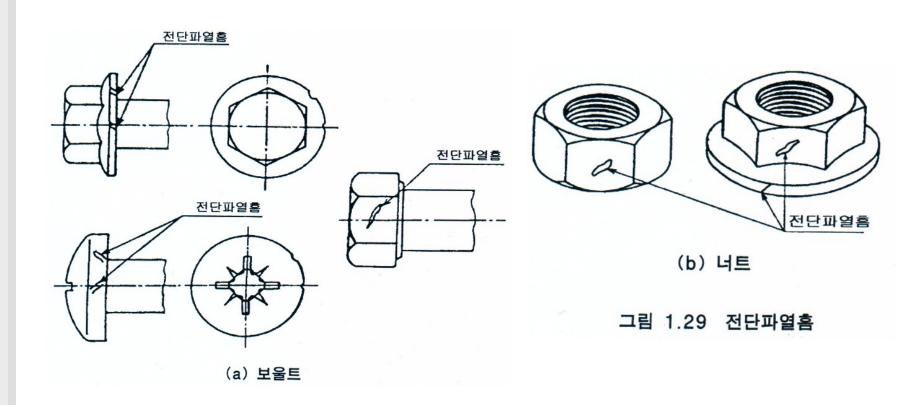
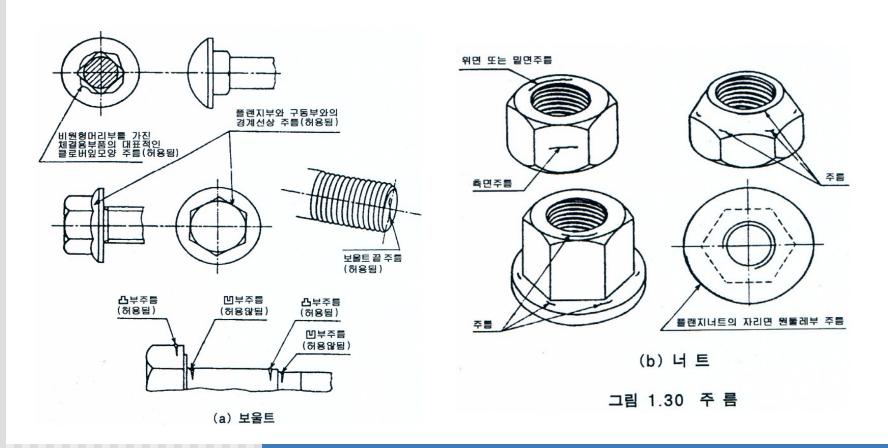
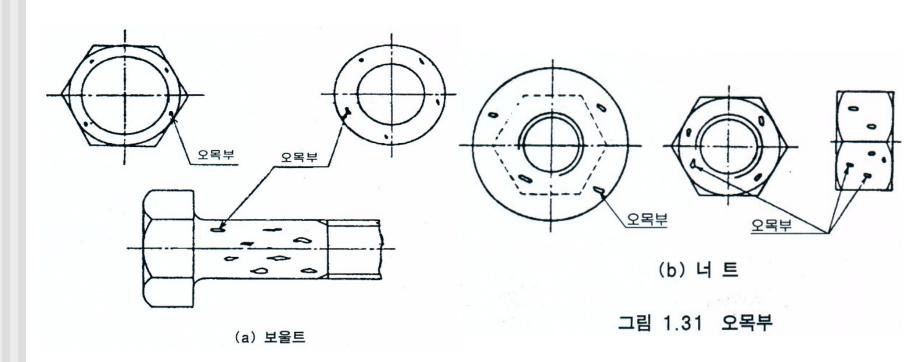




그림 1.28 파열흠


#### 5) 전단파열 홈

- 주로 너트에서 금속표면에 있는 개구부 모양의 홈




#### 6) 주름

#### - 단조시 나사부품의 표면에 있는 얕은 구멍 또는 오목한 부분



#### 7) 오목부 또는 살떨어짐

- 단조 또는 압출시 금속의 충진이 완전히 이루어지지 않아 일어나는 볼트나 너트의 표면에 있는 얕은 구멍 또는 오목한 부분



#### 8) 공구홈

- 보울트나 너트에서 축방향 또는 원둘레방향의 깊이가 얕은 홈

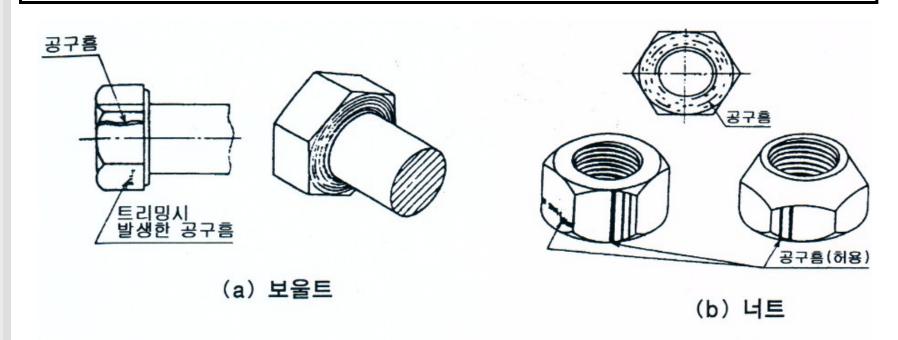



그림 1.32 공구흠

# 1. 11. 5 보울트, 너트에서의 표면결함

# 9) 손상

- 보울트나 너트의 표면에 발생한 살떨어짐과 같은 오목부

### 10) 이물질 혼입터짐

- 소재가 본래 가지고 있는 이물질에 의하여 발생한 터짐

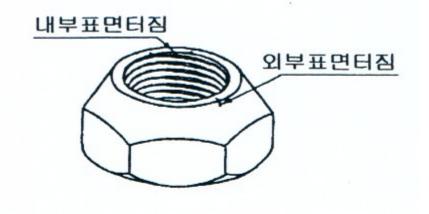
# 1. 11. 5 보울트, 너트에서의 표면결함

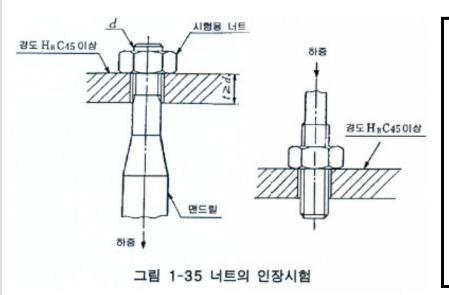
# 11) 와셔접촉부 터짐

- 와셔를 너트에 접촉시킬 때 입구나 허브에 발생한 터짐



그림 1.33 와셔지지부 터짐





그림 1.34 토오크풀림방지 너트의 표면터짐

\* 표면결함의 허용한계 규정 (KS B 1024)

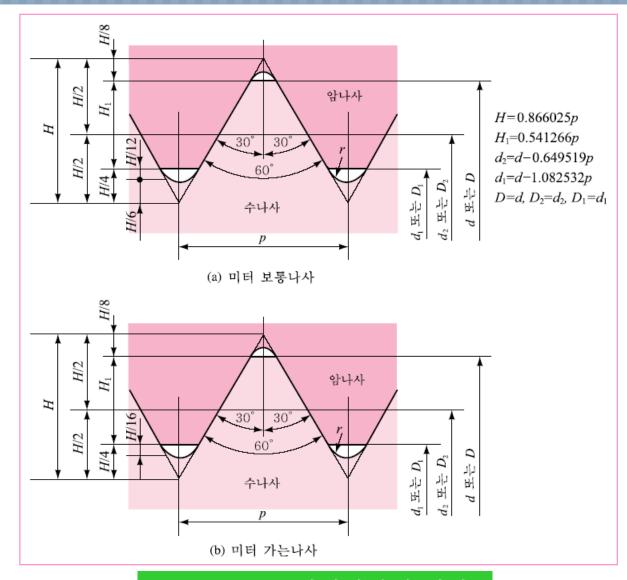
# 1. 11. 6 너트의 기계적 성질시험(KS B 0234-1975)

# 너트의 인장시험

- 너트를 직접 인장시험기에 거는 것은 곤란하므로 맨드렐시험을 실시 함



#### <맨드렐시험>


너트를 맨드렐에 끼우고 인장 혹은 압축 보증하중을 15초간 가한다. 너트는 파괴되지 않아야 하며 하중 을 제거한 뒤 너트를 손으로 돌려서 뺄 수 있어야 함.

# 2-3 ≫ 나사의 종류

### 1. 삼각나사

### (1) 미터나사(metric screw thread)

- 나사의 지름 및 피치 ⇒ [mm] 표시
- 나사산의 각도: 60°
- 보통나사(coarse thread), 가는나사(fine thread)
- 호칭치수 : 수나사의 바깥지름 ⇒ [mm] 표시
- 보통나사 ⇒ M 다음에 [호칭지름]을 표기 미터 가는나사 ⇒ M 다음에 [호칭지름×피치]로 표기



<그림 2-5> 미터나사의 형상

### <표 2-5> 미터 보통나사(KS B 0201) - (1)

(단위 : [mm])

|       |        |     |      |       | 암 나 사        |            |           |  |
|-------|--------|-----|------|-------|--------------|------------|-----------|--|
| l     | 나사의 호칭 | ļ   | 피 치  | 접촉 높이 | 골지름 <i>D</i> | 유효지름 $D_2$ | 안지름 $D_1$ |  |
| 471   | 071    | 071 | p    |       | $H_1$        | -<br>-     | 수 나 사     |  |
| 1란    | 2란     | 3란  |      |       | 바깥지름 $d$     | 유효지름 $d_2$ | 골지름 $d_1$ |  |
| M 1   |        |     | 0.25 | 0.135 | 1.000        | 0.838      | 0.729     |  |
|       | M 1.1  |     | 0.25 | 0.135 | 1.100        | 0.938      | 0.829     |  |
| M 1.2 |        |     | 0.25 | 0.135 | 1.200        | 1.038      | 0.929     |  |
|       | M 1.4  |     | 0.3  | 0.162 | 1.400        | 1.205      | 1.075     |  |
| M 1.6 |        |     | 0.35 | 0.189 | 1.600        | 1.373      | 1.221     |  |
|       | M 1.8  |     | 0.35 | 0.189 | 1.800        | 1.573      | 1.421     |  |
| M 2   |        |     | 0.4  | 0.217 | 2.000        | 1.740      | 1.567     |  |
|       | M 2.2  |     | 0.45 | 0.244 | 2.200        | 1.908      | 1.713     |  |
| M 2.5 |        |     | 0.45 | 0.244 | 2.500        | 2.208      | 2.013     |  |
| M 3   |        |     | 0.5  | 0.271 | 3.000        | 2.675      | 2.459     |  |
|       | M 3.5  |     | 0.6  | 0.325 | 3.500        | 3.110      | 2.850     |  |
| M 4   |        |     | 0.7  | 0.379 | 4.000        | 3.545      | 3.242     |  |
|       | M 4.5  |     | 0.75 | 0.406 | 4.500        | 4.013      | 3.688     |  |
| M 5   |        |     | 0.8  | 0.433 | 5.000        | 4.480      | 4.134     |  |
| M 6   |        |     | 1    | 0.541 | 6.000        | 5.350      | 4.917     |  |
|       | M 7    |     | 1    | 0.541 | 7.000        | 6.350      | 5.917     |  |
| M 8   |        |     | 1.25 | 0.677 | 8.000        | 7.188      | 6.647     |  |
|       |        | M 9 | 1.25 | 0.677 | 9.000        | 8.188      | 7.647     |  |

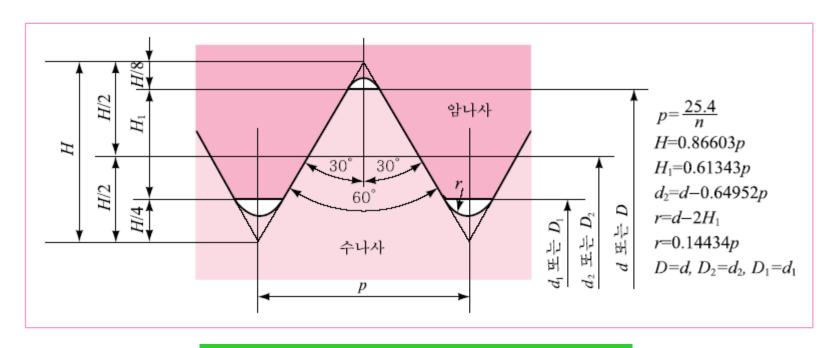
### <표 2-5> 미터 보통나사(KS B 0201) - (2)

| M 10 |      |      | 1.5  | 0.812 | 10.000 | 9.026  | 8.376  |
|------|------|------|------|-------|--------|--------|--------|
|      |      | M 11 | 1.5  | 0.812 | 11.000 | 10.026 | 9.376  |
| M 12 |      |      | 1.75 | 0.947 | 12.000 | 10.863 | 10.106 |
|      | M 14 |      | 2    | 1.083 | 14.000 | 12.701 | 11.835 |
| M 16 |      |      | 2    | 1.083 | 16.000 | 14.701 | 13.835 |
|      | M 18 |      | 2.5  | 1.353 | 18.000 | 16.376 | 15.294 |
| M 20 |      |      | 2.5  | 1.353 | 20.000 | 18.376 | 17.294 |
|      | M 22 |      | 2.5  | 1.353 | 22.000 | 20.376 | 19.294 |
| M 24 |      |      | 3    | 1.624 | 24.000 | 22.051 | 20.752 |
|      | M 27 |      | 3    | 1.624 | 27.000 | 25.051 | 23.752 |
| M 30 |      |      | 3.5  | 1.894 | 30.000 | 27.727 | 26.211 |
|      | M 33 |      | 3.5  | 1.894 | 33.000 | 30.727 | 29.211 |
| M 36 |      |      | 4    | 2.165 | 36.000 | 33.402 | 31.670 |
|      | M 39 |      | 4    | 2.165 | 39.000 | 36.402 | 34.670 |
| M 42 |      |      | 4.5  | 2.436 | 42.000 | 39.077 | 37.129 |
|      | M 45 |      | 4.5  | 2.436 | 45.000 | 42.077 | 40.129 |
| M 48 |      |      | 5    | 2.706 | 48.000 | 44.752 | 42.587 |
|      | M 52 |      | 5    | 2.706 | 52.000 | 48.752 | 46.587 |
| M 56 |      |      | 5.5  | 2.977 | 56.000 | 52.428 | 50.046 |
|      | M 60 |      | 5.5  | 2.977 | 60.000 | 56.428 | 54.046 |
| M 64 |      |      | 6    | 3.248 | 64.000 | 60.103 | 57.505 |
|      | M 68 |      | 6    | 3.248 | 68.000 | 64.103 | 61.505 |

<sup>【</sup>주】1란을 우선적으로 선택하고 필요에 따라 2란, 3란의 순으로 선택한다.

### <표 2-6> 미터 가는나사(KS B 0204) - (1)

(단위: [mm])


|                        |      |       |          | 암 나 사      |                |
|------------------------|------|-------|----------|------------|----------------|
| 11101 <del>- 1</del> 1 | 피 치  | 접촉 높이 | 골지름 $D$  | 유효지름 $D_2$ | 안지름 $D_{ m l}$ |
| 나사의 호칭                 | p    | $H_1$ |          | 수 나 사      |                |
|                        |      |       | 바깥지름 $d$ | 유효지름 $d_2$ | 골지름 $d_1$      |
| M 1×0.2                | 0.2  | 0.108 | 1.000    | 0.870      | 0.783          |
| M 1.1×0.2              | 0.2  | 0.108 | 1.100    | 0.970      | 0.883          |
| M 1.2×0.2              | 0.2  | 0.108 | 1.200    | 1.070      | 0.983          |
| M 1.4×0.2              | 0.2  | 0.108 | 1.400    | 1.270      | 1.183          |
| M 1.6×0.2              | 0.2  | 0.108 | 1.600    | 1.470      | 1.383          |
| M 1.8×0.2              | 0.2  | 0.108 | 1.800    | 1.670      | 1.583          |
| M 2×0.25               | 0.25 | 0.135 | 2.000    | 1.838      | 1.729          |
| M 2.2×0.25             | 0.25 | 0.135 | 2.200    | 2.038      | 1.929          |
| M 2.5×0.35             | 0.35 | 0.189 | 2.500    | 2.273      | 2.121          |
| M 3×0.35               | 0.35 | 0.189 | 3.000    | 2.773      | 2.621          |
| M 3.5×0.35             | 0.35 | 0.189 | 3.500    | 3.273      | 3.121          |
| M 4×0.5                | 0.5  | 0.271 | 4.000    | 3.675      | 3.459          |
| M 4.5×0.5              | 0.5  | 0.271 | 4.500    | 4.175      | 3.959          |
| M 5×0.5                | 0.5  | 0.271 | 5.000    | 4.675      | 4.459          |
| M 5.5×0.5              | 0.5  | 0.271 | 5.500    | 5.175      | 4.959          |
| M 6×0.75               | 0.75 | 0.406 | 6.000    | 5.513      | 5.188          |
| M 7×0.75               | 0.75 | 0.406 | 7.000    | 6.513      | 6.188          |
| M 8×1                  | 1    | 0.541 | 8.000    | 7.350      | 6.917          |
| M 8×0.75               | 0.75 | 0.406 | 8.000    | 7.513      | 7.188          |
| M 9×1                  | 1    | 0.541 | 9.000    | 8.350      | 7.917          |
| M 9×0.75               | 0.75 | 0.406 | 9.000    | 8.513      | 8.188          |

### <표 2-6> 미터 가는나사(KS B 0204) - (2)

| M         10×1.25         1.25         0.677         10.000         9.188         8.647           M         10×1         1         0.541         10.000         9.350         8.917           M         10×0.75         0.75         0.406         10.000         9.513         9.188           M         11×1         1         0.541         11.000         10.350         9.917           M         11×0.75         0.75         0.406         11.000         10.513         10.188           M         12×1.5         1.5         0.812         12.000         11.026         10.376           M         12×1.25         1.25         0.677         12.000         11.188         10.647           M         12×1.2         1         0.541         12.000         11.350         10.917           M         14×1.5         1.5         0.812         14.000         13.026         12.376           M         14×1.5         1.5         0.812         14.000         13.026         12.376           M         14×1.5         1.5         0.812         15.000         14.026         13.376           M         15×1.5         0.812         15.000<                                                                                   |           |      |       |        |        |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-------|--------|--------|--------|
| M 10×0.75         0.75         0.406         10.000         9.513         9.188           M 11×1         1         0.541         11.000         10.350         9.917           M 11×0.75         0.75         0.406         11.000         10.513         10.188           M 12×1.5         1.5         0.812         12.000         11.026         10.376           M 12×1.25         1.25         0.677         12.000         11.188         10.647           M 12×1         1         0.541         12.000         11.350         10.917           M 14×1.5         1.5         0.812         14.000         13.026         12.376           M 14×1.25         1.25         0.677         14.000         13.026         12.376           M 14×1         1         0.541         14.000         13.350         12.917           M 15×1.5         1.5         0.812         15.000         14.026         13.376           M 15×1         1         0.541         15.000         14.350         13.917           M 16×1.5         1.5         0.812         16.000         15.026         14.376           M 16×1         1         0.541         16.000         15.350                                                                     | M 10×1.25 | 1.25 | 0.677 | 10.000 | 9.188  | 8.647  |
| M         11×1         1         0.541         11.000         10.350         9.917           M         11×0.75         0.75         0.406         11.000         10.513         10.188           M         12×1.5         1.5         0.812         12.000         11.026         10.376           M         12×1.25         1.25         0.677         12.000         11.188         10.647           M         12×1         1         0.541         12.000         11.350         10.917           M         14×1.5         1.5         0.812         14.000         13.026         12.376           M         14×1.25         1.25         0.677         14.000         13.026         12.376           M         14×1.25         1.25         0.677         14.000         13.188         12.647           M         14×1         1         0.541         14.000         13.350         12.917           M         15×1.5         1.5         0.812         15.000         14.026         13.376           M         15×1.5         1.5         0.812         15.000         14.350         13.917           M         16×1.5         1.5         0.812<                                                                                  | M 10×1    | 1    | 0.541 | 10.000 | 9.350  | 8.917  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M 10×0.75 | 0.75 | 0.406 | 10.000 | 9.513  | 9.188  |
| M         12×1.5         1.5         0.812         12.000         11.026         10.376           M         12×1.25         1.25         0.677         12.000         11.188         10.647           M         12×1         1         0.541         12.000         11.350         10.917           M         14×1.5         1.5         0.812         14.000         13.026         12.376           M         14×1.25         1.25         0.677         14.000         13.188         12.647           M         14×1         1         0.541         14.000         13.350         12.917           M         15×1.5         1.5         0.812         15.000         14.026         13.376           M         15×1.5         1.5         0.812         15.000         14.026         13.376           M         15×1         1         0.541         15.000         14.350         13.917           M         16×1.5         1.5         0.812         16.000         15.026         14.376           M         16×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1         1         0.541                                                                                          | M 11×1    | 1    | 0.541 | 11.000 | 10.350 | 9.917  |
| M         12×1.25         1.25         0.677         12.000         11.188         10.647           M         12×1         1         0.541         12.000         11.350         10.917           M         14×1.5         1.5         0.812         14.000         13.026         12.376           M         14×1.25         1.25         0.677         14.000         13.188         12.647           M         14×1.25         1.25         0.677         14.000         13.350         12.917           M         14×1         1         0.541         14.000         13.350         12.917           M         15×1.5         1.5         0.812         15.000         14.026         13.376           M         15×1         1         0.541         15.000         14.350         13.917           M         16×1.5         1.5         0.812         16.000         15.026         14.376           M         16×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1         1         0.541                                                                                        | M 11×0.75 | 0.75 | 0.406 | 11.000 | 10.513 | 10.188 |
| M         12×1         1         0.541         12.000         11.350         10.917           M         14×1.5         1.5         0.812         14.000         13.026         12.376           M         14×1.25         1.25         0.677         14.000         13.188         12.647           M         14×1         1         0.541         14.000         13.350         12.917           M         15×1.5         1.5         0.812         15.000         14.026         13.376           M         15×1         1         0.541         15.000         14.026         13.376           M         15×1         1         0.541         15.000         14.350         13.917           M         16×1.5         1.5         0.812         16.000         15.026         14.376           M         16×1.5         1.5         0.812         16.000         15.350         14.917           M         17×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1         1         0.541         17.000         16.350         15.917           M         18×2         2         1.083                                                                                                    | M 12×1.5  | 1.5  | 0.812 | 12.000 | 11.026 | 10.376 |
| M         12×1         1         0.541         12.000         11.350         10.917           M         14×1.5         1.5         0.812         14.000         13.026         12.376           M         14×1.25         1.25         0.677         14.000         13.188         12.647           M         14×1         1         0.541         14.000         13.350         12.917           M         15×1.5         1.5         0.812         15.000         14.026         13.376           M         15×1         1         0.541         15.000         14.026         13.376           M         15×1         1         0.541         15.000         14.350         13.917           M         16×1.5         1.5         0.812         16.000         15.026         14.376           M         16×1.5         1.5         0.812         17.000         15.050         14.917           M         17×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1.5         1.5         0.812         17.000         16.350         15.917           M         18×2         2         1.083                                                                                                | M 12×1.25 | 1.25 | 0.677 | 12.000 | 11.188 | 10.647 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M 12×1    | 1    | 0.541 | 12.000 | 11.350 | 10.917 |
| M         14×1         1         0.541         14.000         13.350         12.917           M         15×1.5         1.5         0.812         15.000         14.026         13.376           M         15×1         1         0.541         15.000         14.350         13.917           M         16×1.5         1.5         0.812         16.000         15.026         14.376           M         16×1         1         0.541         16.000         15.350         14.917           M         17×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1         1         0.541         17.000         16.350         15.917           M         18×2         2         1.083         18.000         16.701         15.835           M         18×1.5         1.5         0.812         18.000         17.026         16.376           M         18×1         1         0.541         18.000         17.350         16.917           M         20×2         2         1.083         20.000         18.701         17.835           M         20×1.5         1.5         0.812         20.000                                                                                           | M 14×1.5  | 1.5  | 0.812 | 14.000 | 13.026 | 12.376 |
| M         15×1.5         1.5         0.812         15.000         14.026         13.376           M         15×1         1         0.541         15.000         14.350         13.917           M         16×1.5         1.5         0.812         16.000         15.026         14.376           M         16×1         1         0.541         16.000         15.350         14.917           M         17×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1         1         0.541         17.000         16.350         15.917           M         18×2         2         1.083         18.000         16.701         15.835           M         18×1.5         1.5         0.812         18.000         17.026         16.376           M         18×1         1         0.541         18.000         17.350         16.917           M         20×2         2         1.083         20.000         18.701         17.835           M         20×1.5         1.5         0.812         20.000         19.350         18.917           M         22×2         2         1.083         22.000                                                                                           | M 14×1.25 | 1.25 | 0.677 | 14.000 | 13.188 | 12.647 |
| M         15×1         1         0.541         15.000         14.350         13.917           M         16×1.5         1.5         0.812         16.000         15.026         14.376           M         16×1         1         0.541         16.000         15.350         14.917           M         17×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1         1         0.541         17.000         16.350         15.917           M         18×2         2         1.083         18.000         16.701         15.835           M         18×1.5         1.5         0.812         18.000         17.026         16.376           M         18×1         1         0.541         18.000         17.350         16.917           M         20×2         2         1.083         20.000         18.701         17.835           M         20×1.5         1.5         0.812         20.000         19.350         18.917           M         22×2         2         1.083         22.000         20.701         19.835           M         22×1.5         1.5         0.812         22.000                                                                                           | M 14×1    | 1    | 0.541 | 14.000 | 13.350 | 12.917 |
| M         16×1.5         1.5         0.812         16.000         15.026         14.376           M         16×1         1         0.541         16.000         15.350         14.917           M         17×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1         1         0.541         17.000         16.350         15.917           M         18×2         2         1.083         18.000         16.701         15.835           M         18×1.5         1.5         0.812         18.000         17.026         16.376           M         18×1         1         0.541         18.000         17.350         16.917           M         20×2         2         1.083         20.000         18.701         17.835           M         20×1.5         1.5         0.812         20.000         19.026         18.376           M         20×1         1         0.541         20.000         19.350         18.917           M         22×2         2         1.083         22.000         20.701         19.835           M         22×1.5         1.5         0.812         22.000                                                                                           | M 15×1.5  | 1.5  | 0.812 | 15.000 | 14.026 | 13.376 |
| M         16×1         1         0.541         16.000         15.350         14.917           M         17×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1         1         0.541         17.000         16.350         15.917           M         18×2         2         1.083         18.000         16.701         15.835           M         18×1.5         1.5         0.812         18.000         17.026         16.376           M         18×1         1         0.541         18.000         17.350         16.917           M         20×2         2         1.083         20.000         18.701         17.835           M         20×1.5         1.5         0.812         20.000         19.026         18.376           M         20×1         1         0.541         20.000         19.350         18.917           M         22×2         2         1.083         22.000         20.701         19.835           M         22×1.5         1.5         0.812         22.000         21.026         20.376           M         22×1         1         0.541         22.000 <td>M 15×1</td> <td>1</td> <td>0.541</td> <td>15.000</td> <td>14.350</td> <td>13.917</td>     | M 15×1    | 1    | 0.541 | 15.000 | 14.350 | 13.917 |
| M         17×1.5         1.5         0.812         17.000         16.026         15.376           M         17×1         1         0.541         17.000         16.350         15.917           M         18×2         2         1.083         18.000         16.701         15.835           M         18×1.5         1.5         0.812         18.000         17.026         16.376           M         18×1         1         0.541         18.000         17.350         16.917           M         20×2         2         1.083         20.000         18.701         17.835           M         20×1.5         1.5         0.812         20.000         19.026         18.376           M         20×1         1         0.541         20.000         19.350         18.917           M         22×2         2         1.083         22.000         20.701         19.835           M         22×1.5         1.5         0.812         22.000         21.026         20.376           M         22×1         1         0.541         22.000         21.350         20.917           M         24×2         2         1.083         24.000 <td>M 16×1.5</td> <td>1.5</td> <td>0.812</td> <td>16.000</td> <td>15.026</td> <td>14.376</td> | M 16×1.5  | 1.5  | 0.812 | 16.000 | 15.026 | 14.376 |
| M         17×1         1         0.541         17.000         16.350         15.917           M         18×2         2         1.083         18.000         16.701         15.835           M         18×1.5         1.5         0.812         18.000         17.026         16.376           M         18×1         1         0.541         18.000         17.350         16.917           M         20×2         2         1.083         20.000         18.701         17.835           M         20×1.5         1.5         0.812         20.000         19.026         18.376           M         20×1         1         0.541         20.000         19.350         18.917           M         22×2         2         1.083         22.000         20.701         19.835           M         22×1.5         1.5         0.812         22.000         21.026         20.376           M         22×1         1         0.541         22.000         21.350         20.917           M         24×2         2         1.083         24.000         22.701         21.835                                                                                                                                                                   | M 16×1    | 1    | 0.541 | 16.000 | 15.350 | 14.917 |
| M 18×2       2       1.083       18.000       16.701       15.835         M 18×1.5       1.5       0.812       18.000       17.026       16.376         M 18×1       1       0.541       18.000       17.350       16.917         M 20×2       2       1.083       20.000       18.701       17.835         M 20×1.5       1.5       0.812       20.000       19.026       18.376         M 20×1       1       0.541       20.000       19.350       18.917         M 22×2       2       1.083       22.000       20.701       19.835         M 22×1.5       1.5       0.812       22.000       21.026       20.376         M 22×1       1       0.541       22.000       21.350       20.917         M 24×2       2       1.083       24.000       22.701       21.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M 17×1.5  | 1.5  | 0.812 | 17.000 | 16.026 | 15.376 |
| M 18×1.5     1.5     0.812     18.000     17.026     16.376       M 18×1     1     0.541     18.000     17.350     16.917       M 20×2     2     1.083     20.000     18.701     17.835       M 20×1.5     1.5     0.812     20.000     19.026     18.376       M 20×1     1     0.541     20.000     19.350     18.917       M 22×2     2     1.083     22.000     20.701     19.835       M 22×1.5     1.5     0.812     22.000     21.026     20.376       M 22×1     1     0.541     22.000     21.350     20.917       M 24×2     2     1.083     24.000     22.701     21.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M 17×1    | 1    | 0.541 | 17.000 | 16.350 | 15.917 |
| M     18×1     1     0.541     18.000     17.350     16.917       M     20×2     2     1.083     20.000     18.701     17.835       M     20×1.5     1.5     0.812     20.000     19.026     18.376       M     20×1     1     0.541     20.000     19.350     18.917       M     22×2     2     1.083     22.000     20.701     19.835       M     22×1.5     1.5     0.812     22.000     21.026     20.376       M     22×1     1     0.541     22.000     21.350     20.917       M     24×2     2     1.083     24.000     22.701     21.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M 18×2    | 2    | 1.083 | 18.000 | 16.701 | 15.835 |
| M 20×2     2     1.083     20.000     18.701     17.835       M 20×1.5     1.5     0.812     20.000     19.026     18.376       M 20×1     1     0.541     20.000     19.350     18.917       M 22×2     2     1.083     22.000     20.701     19.835       M 22×1.5     1.5     0.812     22.000     21.026     20.376       M 22×1     1     0.541     22.000     21.350     20.917       M 24×2     2     1.083     24.000     22.701     21.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M 18×1.5  | 1.5  | 0.812 | 18.000 | 17.026 | 16.376 |
| M     20×1.5     1.5     0.812     20.000     19.026     18.376       M     20×1     1     0.541     20.000     19.350     18.917       M     22×2     2     1.083     22.000     20.701     19.835       M     22×1.5     1.5     0.812     22.000     21.026     20.376       M     22×1     1     0.541     22.000     21.350     20.917       M     24×2     2     1.083     24.000     22.701     21.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M 18×1    | 1    | 0.541 | 18.000 | 17.350 | 16.917 |
| M     20×1     1     0.541     20.000     19.350     18.917       M     22×2     2     1.083     22.000     20.701     19.835       M     22×1.5     1.5     0.812     22.000     21.026     20.376       M     22×1     1     0.541     22.000     21.350     20.917       M     24×2     2     1.083     24.000     22.701     21.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M 20×2    | 2    | 1.083 | 20.000 | 18.701 | 17.835 |
| M     22×2     2     1.083     22.000     20.701     19.835       M     22×1.5     1.5     0.812     22.000     21.026     20.376       M     22×1     1     0.541     22.000     21.350     20.917       M     24×2     2     1.083     24.000     22.701     21.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M 20×1.5  | 1.5  | 0.812 | 20.000 | 19.026 | 18.376 |
| M 22×1.5 1.5 0.812 22.000 21.026 20.376 M 22×1 1 0.541 22.000 21.350 20.917 M 24×2 2 1.083 24.000 22.701 21.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M 20×1    | 1    | 0.541 | 20.000 | 19.350 | 18.917 |
| M 22×1 1 0.541 22.000 21.350 20.917<br>M 24×2 2 1.083 24.000 22.701 21.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M 22×2    | 2    | 1.083 | 22.000 | 20.701 | 19.835 |
| M 24×2 2 1.083 24.000 22.701 21.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 1.5  |       |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M 22×1    |      | ·     | 22.000 | 21.350 |        |
| M 24×1.5 1.5 0.812 24.000 23.026 22.376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M 24×2    | 2    |       | 24.000 | 22.701 | 21.835 |
| i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M 24×1.5  | 1.5  | 0.812 | 24.000 | 23.026 | 22.376 |
| M 24×1 1 0.541 24.000 23.350 22.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M 24×1    | 1    | 0.541 | 24.000 | 23.350 | 22.917 |

### (2) 유니파이 나사(unified screw thread)

- 인치계 나사, 미국·영국·캐나다 3국 협정으로 제정
- ABC 나사 또는 U 나사라고도 한다.
- 호칭치수 ⇒ 수나사의 바깥지름
  - 인치로 표시
  - 1인치에 대한 나사산수로 표시
- 나사산의 각도: 60°



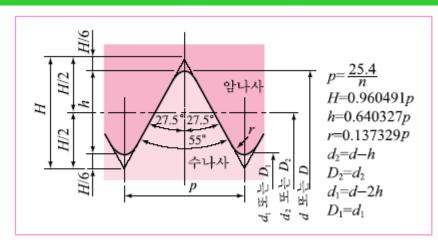
<그림 2-6> 유니파이 나사의 형상

### <표 2-7> 유니파이 보통나사(KS B 0203) - (1)

(단위 : [mm])

|              |               |                 |               |           |                  | Ç               | 암 나 시         |                   |
|--------------|---------------|-----------------|---------------|-----------|------------------|-----------------|---------------|-------------------|
|              | 나사의 호칭        |                 |               | 피치        | 접촉               | 골지름<br><i>D</i> | 유효지름<br>$D_2$ | 안지름<br><i>D</i> 1 |
|              |               |                 | (25.4<br>mm에  | p<br>(참고) | 높이<br><i>H</i> 1 |                 | -<br>수 나 시    |                   |
| 1            | 2             | (참 고)           | 대한 <i>n</i> ) | (/        | 1                | 바깥지름            | _             | 안지름               |
|              |               |                 |               |           |                  | d               | $d_2$         | $d_1$             |
|              | No.1-64 UNC   | 0.0730-64 UNC   | 64            | 0.3969    | 0.215            | 1.854           | 1.598         | 1.425             |
| No.2-56 UNC  |               | 0.0860-56 UNC   | 56            | 0.4536    | 0.246            | 2.184           | 1.890         | 1.694             |
|              | No.3 – 48 UNC | 0.0990 - 48 UNC | 48            | 0.5292    | 0.286            | 2.515           | 2.172         | 1.941             |
| No.4-40 UNC  |               | 0.1120-40 UNC   | 40            | 0.6350    | 0.344            | 2.845           | 2.433         | 2.156             |
| No.5-40 UNC  |               | 0.1250-40 UNC   | 40            | 0.6350    | 0.344            | 3.175           | 2.764         | 2.487             |
| No.6-32 UNC  |               | 0.1380-32 UNC   | 32            | 0.7938    | 0.430            | 3.505           | 2.990         | 2.647             |
| No.8-32 UNC  |               | 0.1640-32 UNC   | 32            | 0.7938    | 0.430            | 4.166           | 3.650         | 3.307             |
| No.10-24UNC  |               | 0.1900-24 UNC   | 24            | 1.0583    | 0.573            | 4.826           | 4.138         | 3.680             |
|              | No.12-24 UNC  | 0.2160-24 UNC   | 24            | 1.0583    | 0.573            | 5.486           | 4.798         | 4.341             |
| 1/4-20UNC    |               | 0.2500-20 UNC   | 20            | 1.2700    | 0.687            | 6.350           | 5.524         | 4.976             |
| 5/6-18 UNC   |               | 0.3125-18 UNC   | 18            | 1.4111    | 0.764            | 7.938           | 7.021         | 6.411             |
| 3/8 - 16 UNC |               | 0.3750-16 UNC   | 16            | 1.5875    | 0.859            | 9.525           | 8.494         | 7.805             |
| 7/16-14 UNC  |               | 0.4375-14 UNC   | 14            | 1.8143    | 0.982            | 11.112          | 9.934         | 9.149             |
| 1/2 - 13 UNC |               | 0.5000-13 UNC   | 13            | 1.9538    | 1.058            | 12.700          | 11.430        | 10.584            |
| 9/16-12 UNC  |               | 0.5625-12 UNC   | 12            | 2.1167    | 1.146            | 14.288          | 12.913        | 11.996            |
| 5/8-11 UNC   |               | 0.6250-11 UNC   | 11            | 2.3091    | 1.250            | 15.875          | 14.376        | 13.376            |
| 3/4 - 10 UNC |               | 0.7500-10 UNC   |               | 2.5400    | 1.375            | 19.050          | 17.399        | 16.299            |
| 7/8-9 UNC    |               | 0.8750-9 UNC    | 9             | 2.8222    | 1.528            | 22.225          | 20.391        | 19.169            |

#### <표 2-7> 유니파이 보통나사(KS B 0203) - (2)


| 1-8 UNC                           | 1.0000-8 UNC   | 8              | 3.1750 | 1.719 | 25.400  | 23.338 | 21.963 |
|-----------------------------------|----------------|----------------|--------|-------|---------|--------|--------|
| $1\frac{1}{8} - 7$ UNC            | 1.1250-7 UNC   | 7              | 3.6286 | 1.964 | 28.575  | 26.218 | 24.648 |
| $1\frac{1}{4} - 7$ UNC            | 1.2500-7 UNC   | 7              | 3.6286 | 1.964 | 31.750  | 29.393 | 27.823 |
| $1\frac{3}{8}$ - 6 UNC            | 1.3750-6 UNC   | 6              | 4.2333 | 2.291 | 34.925  | 32.174 | 30.343 |
| $1\frac{1}{2}$ -6 UNC             | 1.5000-6 UNC   | 6              | 4.2333 | 2.291 | 38.100  | 35.349 | 33.518 |
| $1\frac{3}{4}$ - 5 UNC            | 1.7500-5 UNC   | 5              | 5.0800 | 2.750 | 44.450  | 41.151 | 38.951 |
| $2-4\frac{1}{2}$ UNC              | 2.0000-4.5 UNC | $4\frac{1}{2}$ | 5.6444 | 3.055 | 50.800  | 47.135 | 44.689 |
| $2\frac{1}{4} - 4\frac{1}{2}$ UNC | 2.2500-4.5 UNC | $4\frac{1}{2}$ | 5.6444 | 3.055 | 57.150  | 53.485 | 51.039 |
| $2\frac{1}{2}$ - 4 UNC            | 2.5000-4 UNC   | 4              | 6.3500 | 3.437 | 63.500  | 59.375 | 56.627 |
| $2\frac{3}{4}$ - 4 UNC            | 2.7500-4 UNC   | 4              | 6.3500 | 3.437 | 69.850  | 65.725 | 62.977 |
| 3-4 UNC                           | 3.0000-4 UNC   | 4              | 6.3500 | 3.437 | 76.200  | 72.075 | 69.327 |
| $3\frac{1}{4} - 4$ UNC            | 3.2500-4 UNC   | 4              | 6.3500 | 3.437 | 82.550  | 78.425 | 75.677 |
| $3\frac{1}{2} - 4$ UNC            | 3.5000-4 UNC   | 4              | 6.3500 | 3.437 | 88.900  | 84.775 | 82.027 |
| $3\frac{3}{4} - 4$ UNC            | 3.7500-4 UNC   | 4              | 6.3500 | 3.437 | 95.250  | 91.125 | 88.377 |
| 4-4 UNC                           | 4.0000 - 4 UNC | 4              | 6.3500 | 3.437 | 101.600 | 97.475 | 94.727 |

【주】1란을 우선적으로 선택하고 필요에 따라 2란을 선택한다. 참고란에 표시하는 것은 나사의 호 칭을 10진법으로 표시한 것이다.

# (3) 관용 나사(pipe thread)

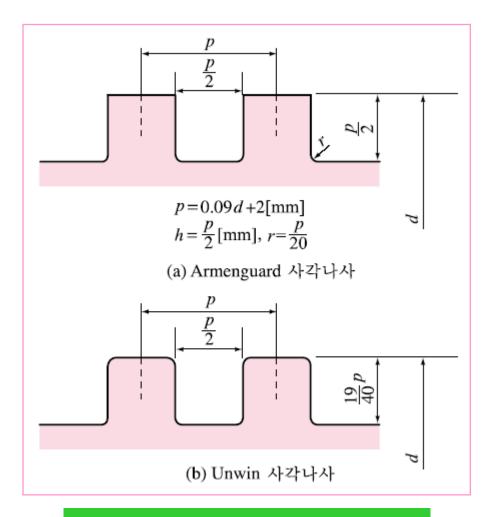
- 관(管; pipe)을 연결할 때 관의 양 끝에 나사를 깎고 관의 이음쇠를 연결
- 미터나사 사용 시 관두께 감소로 강도 저하 방지
- 가는나사보다도 피치가 작은 관용나사를 사용
- 누설을 방지하고 기밀(氣密)을 유지

#### <표 2-9> 관용 평행나사의 규격(KS B 0221) - (1)



### <표 2-9> 관용 평행나사의 규격(KS B 0221) - (2)

(단위 : [mm])

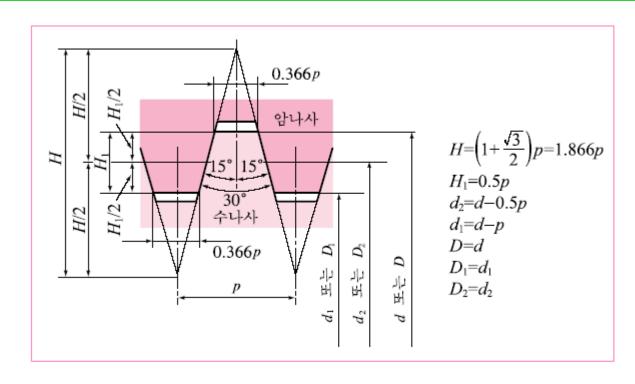

|                    |           |            |                 |       |          |            | <u> []</u> ) |
|--------------------|-----------|------------|-----------------|-------|----------|------------|--------------|
|                    | 나사산 수     | ᆔᅱ         | 11111101        | 산 봉우리 |          | 수 나 사      |              |
| 나사의                | 25.4 [mm] | 피치         | 나사산의<br>높이      | 및     | 바깥지름 $d$ | 유효지름 $d_2$ | 골지름 $d_{1}$  |
| 호칭                 | 에 대하여     | $p \ (참고)$ | $\frac{\pm}{h}$ | 골 둥글기 |          | 암 나 사      |              |
|                    | n         | ( - 1-)    |                 | r     | 골지름 $D$  | 유효지름 $D_2$ | 안지름 $D_1$    |
| G 1/16             | 28        | 0.9071     | 0.581           | 0.12  | 7.723    | 7.142      | 6.561        |
| G 1/8              | 28        | 0.9071     | 0.581           | 0.12  | 9.728    | 9.147      | 8.566        |
| G 1/4              | 19        | 1.3368     | 0.856           | 0.18  | 13.157   | 12.301     | 11.445       |
| G 3/8              | 19        | 1.3368     | 0.856           | 0.18  | 16.662   | 15.806     | 14.950       |
| G 1/2              | 14        | 1.8143     | 1.162           | 0.25  | 20.955   | 19.793     | 18.631       |
| G 5/8              | 14        | 1.8143     | 1.162           | 0.25  | 22.911   | 21.749     | 20.587       |
| G 3/4              | 14        | 1.8143     | 1.162           | 0.25  | 26.441   | 25.279     | 24.117       |
| G 7/8              | 14        | 1.8143     | 1.162           | 0.25  | 30.201   | 29.039     | 27.877       |
| G 1                | 11        | 2.3091     | 1.479           | 0.32  | 33.249   | 31.770     | 30.291       |
| G $1\frac{1}{8}$   | 11        | 2.3091     | 1.479           | 0.32  | 37.897   | 36.418     | 34.939       |
| G $1\frac{1}{4}$   | 11        | 2.3091     | 1.479           | 0.32  | 41.910   | 40.431     | 38.952       |
| G $1\frac{1}{2}$   | 11        | 2.3091     | 1.479           | 0.32  | 47.803   | 46.324     | 44.845       |
| G $1\frac{3}{4}$   | 11        | 2.3091     | 1.479           | 0.32  | 53.746   | 52.267     | 50.788       |
| G 2                | 11        | 2.3091     | 1.479           | 0.32  | 59.614   | 58.135     | 56.656       |
| G $2\frac{1}{4}$   | 11        | 2.3091     | 1.479           | 0.32  | 65.710   | 64.231     | 62.752       |
| $G 2\frac{1}{2}$   | 11        | 2.3091     | 1.479           | 0.32  | 75.184   | 73.705     | 72.226       |
| G $2\frac{3}{4}$   | 11        | 2.3091     | 1.479           | 0.32  | 81.534   | 80.055     | 78.576       |
| G 3                | 11        | 2.3091     | 1.479           | 0.32  | 87.884   | 86.405     | 84.926       |
| G $3\frac{1}{2}$   | 11        | 2.3091     | 1.479           | 0.32  | 100.330  | 98.851     | 97.372       |
| G 4                | 11        | 2.3091     | 1.479           | 0.32  | 113.030  | 111.551    | 110.072      |
| $G \ 4\frac{1}{2}$ | 11        | 2.3091     | 1.479           | 0.32  | 125.730  | 124.251    | 122.772      |
| G 5                | 11        | 2.3091     | 1.479           | 0.32  | 138.430  | 136.951    | 135.472      |
| G $5\frac{1}{2}$   | 11        | 2.3091     | 1.479           | 0.32  | 151.130  | 149.651    | 148.172      |
| G 6                | 11        | 2.3091     | 1.479           | 0.32  | 163.830  | 162.351    | 160.872      |

【비고】 표 중의 관용 평행나사를 표시하는 기호 G는 필요에 따라 생략하여도 좋다.

# 2. 운동용 나사

### (1) 사각나사(square thread)

- 축방향으로 큰 하중을 받으면서 운동 전달에 적합
- 하중 방향은 일정하지 않고 교번하중 시 운동용 나사
- 나사 효율은 좋지만, 공작 곤란, 고정밀용으로 부적합
- 나사프레스, 대형선반의 이송나사(feed screw)에 사용




<그림 2-7> 사각나사의 형상

### (2) 사다리골 나사(trapezoidal screw thread)

- 나사산 형상이 사다리꼴로서 운동용 나사
- 사각나사보다 더욱 강하다.
- 사다리꼴나사의 나사산 강도가 사각나사보다 크다.
- 나사의 봉우리와 골에 틈이 생기므로 공작이 쉽다.
- 나사의 물림이 좋고, 마모를 적게 할 수 있는 잇점
- 고정밀도 나사이므로 공작기계 이송나사 등에 사용
- 애크미 나사(Acme thread)라고도 한다.
- 30° 사다리꼴나사, 29° 사다리꼴나사 규정

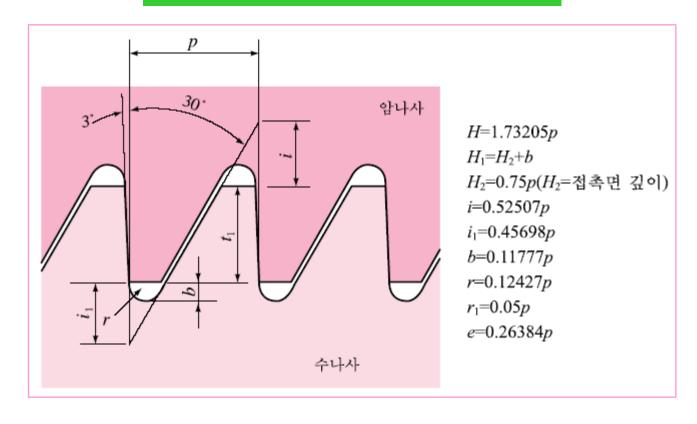
#### <표 2-12> 미터 사다리꼴 나사의 기준치수(KS B 0229) - (1)



### <표 2-12> 미터 사다리꼴 나사의 기준치수(KS B 0229) - (2)

(단위: [mm])

|           |          |                                |                |            | ( · · · · · · · · · · · · · · · · · · |
|-----------|----------|--------------------------------|----------------|------------|---------------------------------------|
|           |          |                                |                | 암 나 사      |                                       |
| ILILOI 등위 | □   克  p | 접촉 높이<br><i>H</i> <sub>1</sub> | 골 지 름 <i>D</i> | 유효지름 $D_2$ | 안 지 름 <i>D</i> <sub>1</sub>           |
| 나사의 호칭    |          |                                |                | 수 나 사      |                                       |
|           |          |                                | 바깥지름 $d$       | 유효지름 $d_2$ | 골 지 름 <i>d</i> <sub>1</sub>           |
| Tr 8×1.5  | 1.5      | 0.75                           | 8.000          | 7.250      | 6.500                                 |
| Tr 9×2    | 2        | 1                              | 9.000          | 8.000      | 7.000                                 |
| Tr 9×1.5  | 1.5      | 0.75                           | 9.000          | 8.250      | 7.500                                 |
| Tr 10×2   | 2        | 1                              | 10.000         | 9.000      | 8.000                                 |
| Tr 10×1.5 | 1.5      | 0.75                           | 10.000         | 9.250      | 8.500                                 |
| Tr 11×3   | 3        | 1.5                            | 11.000         | 9.500      | 8.000                                 |
| Tr 11×2   | 2        | 1                              | 11.000         | 10.000     | 9.000                                 |
| Tr 12×3   | 3        | 1.5                            | 12.000         | 10.500     | 9.000                                 |
| Tr 12×2   | 2        | 1                              | 12.000         | 11.000     | 10.000                                |
| Tr 14×3   | 3        | 1.5                            | 14.000         | 12.500     | 11.000                                |
| Tr 14×2   | 2        | 1                              | 14.000         | 13.000     | 12.000                                |
| Tr 16×4   | 4        | 2                              | 16.000         | 14.000     | 12.000                                |
| Tr 16×2   | 2        | 1                              | 16.000         | 15.000     | 14.000                                |
| Tr 18×4   | 4        | 2                              | 18.000         | 16.000     | 14.000                                |
| Tr 18×2   | 2        | 1                              | 18.000         | 17.000     | 16.000                                |
| Tr 20×4   | 4        | 2                              | 20.000         | 18.000     | 16.000                                |
| Tr 20×2   | 2        | 1                              | 20.000         | 19.000     | 18.000                                |


### <표 2-12> 미터 사다리꼴 나사의 기준치수(KS B 0229) - (3)

| Tr 22×8  | 8  | 4   | 22.000 | 18.000 | 14.000 |
|----------|----|-----|--------|--------|--------|
| Tr 22×5  | 5  | 2.5 | 22.000 | 19.500 | 17.000 |
| Tr 22×3  | 3  | 1.5 | 22.000 | 20.500 | 19.000 |
| Tr 24×8  | 8  | 4   | 24.000 | 20.000 | 16.000 |
| Tr 24×5  | 5  | 2.5 | 24.000 | 21.500 | 19.000 |
| Tr 24×3  | 3  | 1.5 | 24.000 | 22.500 | 21.000 |
| Tr 26×8  | 8  | 4   | 26.000 | 22.000 | 18.000 |
| Tr 26×5  | 5  | 2.5 | 26.000 | 23.500 | 21.000 |
| Tr 26×3  | 3  | 1.5 | 26.000 | 24.500 | 23.000 |
| Tr 28×8  | 8  | 4   | 28.000 | 24.000 | 20.000 |
| Tr 28×5  | 5  | 2.5 | 28.000 | 25.500 | 23.000 |
| Tr 28×3  | 3  | 1.5 | 28.000 | 26.500 | 25.000 |
| Tr 30×10 | 10 | 5   | 30.000 | 25.000 | 20.000 |
| Tr 30×6  | 6  | 3   | 30.000 | 27.000 | 24.000 |
| Tr 30×3  | 3  | 1.5 | 30.000 | 28.500 | 27.000 |
| Tr 32×10 | 10 | 5   | 32.000 | 27.000 | 22.000 |
| Tr 32×6  | 6  | 3   | 32.000 | 29.000 | 26.000 |
| Tr 32×3  | 3  | 1.5 | 32.000 | 30.500 | 29.000 |
| Tr 34×10 | 10 | 5   | 34.000 | 29.000 | 24.000 |
| Tr 34×6  | 6  | 3   | 34.000 | 31.000 | 28.000 |
| Tr 34×3  | 3  | 1.5 | 34.000 | 32.500 | 31.000 |
| Tr 36×10 | 10 | 5   | 36.000 | 31.000 | 26.000 |
| Tr 36×6  | 6  | 3   | 36.000 | 33.000 | 30.000 |
| Tr 36×3  | 3  | 1.5 | 36.000 | 34.500 | 33.000 |
| Tr 38×10 | 10 | 5   | 38.000 | 33.000 | 28.000 |
| Tr 38×7  | 7  | 3.5 | 38.000 | 34.500 | 31.000 |
| Tr 38×3  | 3  | 1.5 | 38.000 | 36.500 | 35.000 |
|          | •  |     |        |        |        |

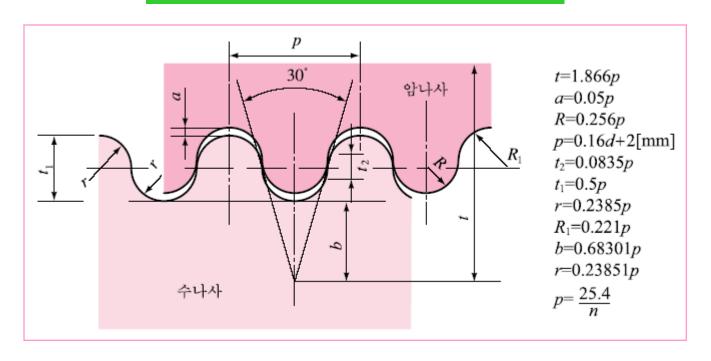
### (3) 톱니 나사(buttress thread)

- 큰 하중이 한쪽 방향으로만 작용할 때 ⇒ 프레스, 나사잭
- 하중을 받는 면은 축에 직각인 사각나사, 힘을 받지 않는반대쪽은 삼각나사로 형성된 것 ⇒ 두 나사의 장점 선택
- 나사산 각도 30°, 45°, 하중을 받지 않는 면 0.2[mm] 틈새
- 하중을 받는 쪽 제작의 용이성을 위해 나사산의 각도가 30°인 경우 3° 경사, 45°인 경우 5° 경사를 준다.

### 〈표 2-13〉 톱니 나사의 규격 - (1)



# 〈표 2-13> 톱니 나사의 규격 – (2)


(단위: [mm])

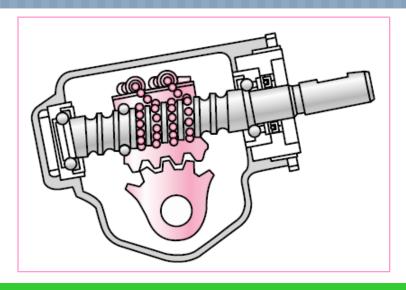
| 피 초 <br>p | 수나사의 높이 $h_1$ | 접촉면의 깊이 $h_2$ | e      | b     | r     | $r_1$ |
|-----------|---------------|---------------|--------|-------|-------|-------|
| 5         | 4.339         | 3.75          | 1.319  | 0.589 | 0.621 | 0.25  |
| 6         | 5.207         | 4.5           | 1.583  | 0.707 | 0.746 | 0.3   |
| 7         | 6.074         | 5.25          | 1.847  | 0.824 | 0.870 | 0.35  |
| 8         | 6.942         | 6             | 2.411  | 0.942 | 0.994 | 0.4   |
| 9         | 7.810         | 6.75          | 2.375  | 1.060 | 1.118 | 0.45  |
| 10        | 8.678         | 7.5           | 2.638  | 1.178 | 1.243 | 0.5   |
| 12        | 10.413        | 9             | 3.166  | 1.413 | 1.491 | 0.6   |
| 14        | 12.149        | 10.5          | 3.694  | 1.649 | 1.740 | 0.7   |
| 16        | 13.884        | 12            | 4.221  | 1.884 | 1.988 | 0.8   |
| 18        | 15.620        | 13.5          | 4.749  | 2.120 | 2.237 | 0.9   |
| 20        | 17.355        | 15            | 5.277  | 2.355 | 2.485 | 1.0   |
| 22        | 19.091        | 16.5          | 5.804  | 2.591 | 2.734 | 1.1   |
| 24        | 20.826        | 18            | 6.332  | 2.826 | 2.982 | 1.2   |
| 26        | 22.562        | 19.5          | 6.860  | 3.062 | 3.231 | 1.3   |
| 28        | 24.298        | 21            | 7.388  | 3.298 | 3.480 | 1.4   |
| 32        | 27.769        | 24            | 8.443  | 3.769 | 3.977 | 1.6   |
| 36        | 31.240        | 27            | 9.498  | 4.240 | 4.474 | 1.8   |
| 40        | 34.711        | 30            | 10.554 | 4.711 | 4.971 | 2.0   |
| 44        | 38.182        | 33            | 11.609 | 5.182 | 5.468 | 2.2   |
| 48        | 41.653        | 36            | 12.664 | 5.653 | 5.965 | 2.4   |

### (4) 둥근나사(round thread 또는 knuckle thread)

- 나사산과 골의 반지름이 같은 원호로 연결된 모양
- 나사 봉우리와 골은 크고 둥글다.
- 큰 힘을 받는 부분, 먼지, 모래 등이 나사산 사이에 들어가도 나사의 작용에 별로 영향을 주지 않는 부분에 사용
- 전구와 소켓의 결합부, 또는 호스(hose) 이음부에 사용

### 〈표 2-14〉 둥근 나사의 규격 - (1)




### 〈표 2-14〉 둥근 나사의 규격 - (2)

(단위 : [mm])

| 둥근나사<br>호칭지름 | d  | $d_1$ | 나사산 수(25.4<br>[mm])에 대해) | 둥근나사<br>호칭지름 | d   | $d_1$ | 나사산 수(25.4<br>[mm])에 대해) |
|--------------|----|-------|--------------------------|--------------|-----|-------|--------------------------|
| 8            | 8  | 5.46  | 10                       | 40           | 40  | 35.77 | 6                        |
| 9            | 9  | 6.46  | 10                       | 44           | 44  | 39.77 | 6                        |
| 10           | 10 | 7.46  | 10                       | 48           | 48  | 43.77 | 6                        |
| 12           | 12 | 9.46  | 10                       | 52           | 52  | 47.77 | 6                        |
| 14           | 14 | 10.83 | 8                        | 55           | 55  | 50.77 | 6                        |
| 16           | 16 | 12.83 | 8                        | 60           | 60  | 55.77 | 6                        |
| 18           | 18 | 14.83 | 8                        | 65           | 65  | 60.77 | 6                        |
| 20           | 20 | 16.83 | 8                        | 68           | 68  | 63.77 | 6                        |
| 22           | 22 | 18.83 | 8                        | 70           | 70  | 65.77 | 6                        |
| 24           | 24 | 20.83 | 8                        | 75           | 75  | 70.77 | 6                        |
| 26           | 26 | 22.83 | 8                        | 80           | 80  | 75.77 | 6                        |
| 28           | 28 | 24.83 | 8                        | 85           | 85  | 80.77 | 6                        |
| 30           | 30 | 26.83 | 8                        | 90           | 90  | 85.77 | 6                        |
| 32           | 32 | 2883  | 8                        | 95           | 95  | 90.77 | 6                        |
| 36           | 36 | 32.83 | 8                        | 100          | 100 | 95.77 | 6                        |

## (5) 볼나사(ball screw)

- 미끄럼 나사의 마찰계수 µ: 0.1~0.15 정도
- μ는 0.005 이하로 극히 작아서 나사의 효율은 90[%] 이상
- 백래시(backlash)를 작게 할 수 있고, 정밀하고 마멸이 적다.
- NC 공작기계의 이송나사, 자동차의 조향장치(steering system), 항공기 날개의 플랩(flap) 작동장치 등에 널리 사용

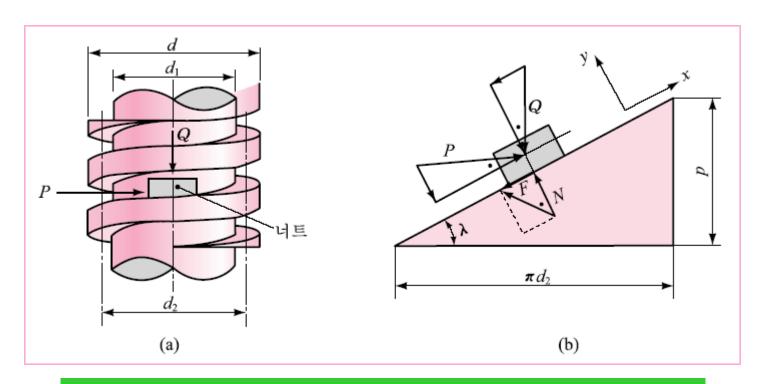


# <그림 2-8> 자동차 조향장치의 볼나사

#### <표 2-15> 볼나사의 특징

| 특 | 징 | 내 용                                                                                                                                          |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------|
| 장 | 점 | ① 마찰이 매우 적고, 기계효율이 높다. ② 시동 토크, 또는 작동 토크의 변동이 적다. ③ 예압에 의한 치면놀이(backlash)가 제거되고, 강성이 높다. ④ 규격화가 가능하므로 호환성이 있다. ⑤ 일반적으로 그리스 윤활을 하므로 보수가 용이하다. |
| 단 | 점 | ⑥ 고속에서 구동할 경우 소음이 크다.<br>⑦ 미끄럼 나사에 비하여 내충격성 및 감쇠성이 떨어진다.<br>⑧ 기계효율이 높으므로 작동유지나 역전방지용 부대요소가 필요하다.                                             |

# 2-4 ≫ 나사의 역학


# 1. 나사의 회전 토크

# (1) 사각나사

① 나사의 회전력 및 토크

P: 나사를 조이는 힘(접선방향 회전력)

Q: 축방향 하중,  $\lambda$ : 리드각



<그림 2-9> 사각나사에 작용하는 힘(나사를 조일 때)

■ 나사면에 평행한 방향(x 방향)에 대한 힘의 평형

$$\sum F_x = P\cos\lambda - Q\sin\lambda - F = 0$$

$$\therefore P\cos\lambda - Q\sin\lambda = F$$

여기서 F: 마찰력 ( $F = \mu N$ )

■ 경사면에 수직한 방향(y 방향)에 대한 힘의 평형

$$\sum F_y = -P\sin\lambda - Q\cos\lambda + N = 0$$

$$P\sin\lambda + Q\cos\lambda = N$$

$$F = \mu N = P\cos\lambda - Q\sin\lambda = \mu(P\sin\lambda + Q\cos\lambda)$$

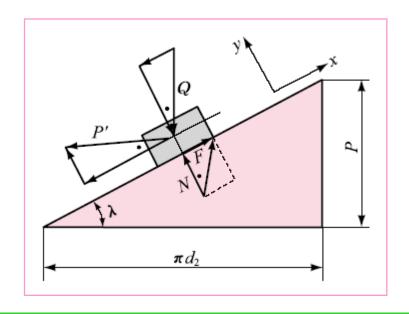
$$\tan \rho = \mu \tag{2.4}$$

$$P = Q \frac{\mu \cos \lambda + \sin \lambda}{\cos \lambda - \mu \sin \lambda} = Q \frac{\tan \rho \cos \lambda + \sin \lambda}{\cos \lambda - \tan \rho \sin \lambda}$$

$$= Q \frac{\tan \rho + \tan \lambda}{1 - \tan \rho \tan \lambda} = Q \tan (\rho + \lambda)$$
(2 · 5)

$$an \lambda = rac{p}{\pi d_2}$$
이므로 회전력  $P$ 는

$$P = Q \frac{p + \mu \pi d_2}{\pi d_2 - \mu p} \tag{2.6}$$


$$T = P \frac{d_2}{2} = Q \frac{d_2}{2} \tan(\rho + \lambda) = \frac{d_2}{2} Q \frac{p + \mu \pi d_2}{\pi d_2 - \mu p}$$
 (2 · 7)

■ 나사를 풀 때

$$P' = Q \tan \left(\rho - \lambda\right) \tag{2.8}$$

$$T = P' \frac{d_2}{2} = Q \frac{d_2}{2} \tan\left(\rho - \lambda\right) \tag{2.9}$$

- 나사를 풀 때는 적어도  $P' = Q \tan(\rho - \lambda)$ 의 힘이 필요



<그림 2-10> 사각나사에 작용하는 힘(나사를 풀 때)

### ② 나사의 자립조건

- (a) P' < 0,  $\rho \lambda < 0$ 이면  $\rho < \lambda$  : 나사는 저절로 풀어진다.
- (b) P'=0,  $\rho-\lambda=0$ 이면  $\rho=\lambda$  : 임의의 위치에서 정지
- (c) P'>0,  $\rho-\lambda>0$ 이면  $\rho>\lambda$  : 나사를 푸는데 힘이 필요

⇒ 나사의 자립상태(self - sustenance)

■ 나사가 저절로 풀리지 않고 자립상태를 유지 조건 :

$$\rho \ge \lambda \tag{2.10}$$

; 나사의 자립조건(self-locking condition)

• 체결용 나사의 자랍상태  $\Rightarrow$  마찰각  $\rho$  > 리드각  $\lambda$ 

$$\mu \ge \frac{p}{\pi d_2} \tag{2.11}$$