Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes

m First-fit: Allocate the first hole that is big enough

m Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size.

m Worst-fit: Allocate the largest hole; must also search entire list.

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

Which is the fastest? Time complexity of first-fit is gradually
increased - Next-fit

What is the advantage of worst-fit ?

Operating System Concepts 8.1 Silberschatz, Galvin and Gagne ©2009

First Fit

Dynamic Storage-Allocation Problem

(a) First-fit strategy

Place job in first memory hole on
free memory list in which it will fit.

Free Memory List (Kept in random order.)

N

16MB hole

14MB hole

In use

5MB hole

In use

Start
address Length
[is. I Request for
: o 13MB &
e 5MB e
C 14MB
g 30MB :
L]
&

30MB hole

Operating System Concepts 8.2

Silberschatz, Galvin and Gagne ©2009

Dynamic Storage-Allocation Problem
Best Fit

(b) Best-fit strategy 0 ;
Place process in the smallest : Operatingapteln
possible hole in which it will fit. 5 16MB hole

Free Memory List (Kept in ascending order m

by hole size.)
Start % - 14MB hole >

W

address Length d \I-n-use/
Request for

e
e 5MB e 13MB o . 5MB hole
I |
li Ly EME‘ In use
a 16MB g
g 30MB : 30MB hole
L]
»

Operating System Concepts 8.3 Silberschatz, Galvin and Gagne ©209

Dynamic Storage-Allocation Problem
Worst Fit

(c) Worst-fit strategy 0 .
; Operating system
Place process in the largest 3
possible hole in which it will fit. . 16MB hole
Free Memory List (Kept in descending order # In use
Start By HoeRied 14MB hole
address Length d
| | = = 2 In use
100 T30 e 1;&“895 il ¢ 5MB hole
a 16MB Pl T In use
& 14MB s N
e 5MB : » 30MB hole >
—~————

Operating System Concepts 8.4 Silberschatz, Galvin and Gagne ©209

Fragmentation

m Fragmentation
e The main problem of multiple-partition (continuous) allocation.

®m Internal Fragmentation — allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used

m External Fragmentation — total memory space exists to satisfy a
request, but it is not contiguous

Operating System Concepts 8.5 Silberschatz, Galvin and Gagne ©2009

Internal Fragmentation

0 4~
Operating system
a
Partition 1
b
Used memory
Partition 2
L . Unused memory
Partition 3
d

Operating System Concepts 8.6 Silberschatz, Galvin and Gagne ©2009

External Fragmentation

Operating system Operating system Operating system
P1 P4 P1
e e
e | e
2 P, finishes Hiole Hole
and frees its
memory.
P3 P3 P3
o e ——)
P4 Ps ™ Hole
P4 finishes
and frees its
P Pc memory. P
Hole Hole Hole
e
Operating System Concepts 8.7

Silberschatz, Galvin and Gagne ©2009

External Fragmentation

® Reduce external fragmentation by Coalescing
e Combine adjacent free blocks into one large block

e Often not enough to reclaim significant amount of memory

B Reduce external fragmentation by Compaction

e Shuffle memory contents to replace all free memory together in
one large block

e Compaction is possible only if relocation is dynamic, and is
done at execution time

e In compile time or load time binding scheme, compaction is
Impossible.

» The necessary for execution time binding
Or, we say real time address binding

— AN
V g

Operating System Concepts 8.8 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts

Coalescing

Operating system Operating system
Other Other
processes processes
2MB hole 2MB hole
P1(5MB) ¢~ = 5MB hole

P1 finishes
Other and frees Other
processes Its processes
memory.
8.9

Operating
system
combines
adjacent
holes to
form a
single
larger hole.

Operating system

Other
processes

7MB hole

Other
processes

Silberschatz, Galvin and.Gagne ©209

Compaction

Operating system Operating system
T e SR In use
L In use
Free
taltice i L In use
Free
Free
In use .
Free
Operating system places
all “in use” blocks together
leaving free memory as a
single large hole.
£ » o s
Operating System Concepts

8.10 Silberschatz, Galvin and Gagne ©2009

Relocation Register revisited

® Relocation Register revisited
e Hardware support for execution time binding.

e The binding management of OS alone severely degrades system
performance.

e Mechanism
» Compiler compiles the relative address base as zero address.

» OS loads process base (beginning) address as the value of
relocation register when each time process is invoked (i.e., just
executed). = dynamic loading with dynamic linking

» CPU calculates THE instruction by adding instruction address
and relocation register value and fetches into memory

Operating System Concepts 8.11 Silberschatz, Galvin and Gagne ©2009

Where are We?

® Where are We?
e Multiple partition continuous allocation
e Fragmentation and Compaction
e Relocation register

e Problem still remains
» When is the compaction conducted?

» Eventually, the address space is overflowed, although
compaction.

» But actually, no memory overflow is occurred.
» How can it be possible? > PAGING

Operating System Concepts 8.12 Silberschatz, Galvin and Gagne ©2009

Paging

® Memory management scheme that permits the physical address space
of a process to be non-continuous.

e cf. Not all in memory - the concept of demand paging in virtual
memory (Chap. 9)

® Divide memory space into small chucks.
e Concept of paging

e Non-continuous —> scattered across the memory - No external
fragmentation.

®m Do not load all, but load only necessary chucks.
e Concept of demand paging in virtual memory

® Locality Model
e Temporal locality vs. Spatial locality
e e.g., loop or array traversal

P s s
V g

Operating System Concepts 8.13 Silberschatz, Galvin and Gagne ©2009

® Temporal Locality
e Local variable i, j, temp

m Spatial Locality

e Continuous change in array index

m Usually, temporal and spatial
localities occur together

e Loop structure

Operating System Concepts 8.14

More about Locality

#define ARR LEN 5

void bubbleSort(int srcBArr[], int n)

{

int i, j, temp;

for(i=0; i<n; i++)
{
for(j=1; j<n-1; j++)
{
if (sreArr[j-1] > srcArr[j])
{

temp = srcArr[j-1];
|3rcArr[j—1] = 3rcArr[j]4
srcArr([]] = temp;

int tmain(int argec, TCHAR ** argv)

{

int arr[ARR LEN] = {5, 3, 7, 6, 9};
bubbleSort (arr, ARR;;EN);

for (int i=0; i<ARR;LEN; i++)
printf("%d, ", arr[i]);

return 0;

Silberschatz, Galvin and Gagne ©2609

Paging

® Divide physical memory into fixed-sized blocks called frames (size is
power of 2, between 512 bytes and 8192 bytes)

m Divide logical memory into blocks of same size called pages.

m Keep track of all free frames

B To run a program of size n pages, need to find n free frames and load
program

B Setup apage table to translate logical to physical addresses

e Page mapped into frame in arbitrary memory location through
page table mapping scheme

e Internal fragmentation could be possible, but trivial compared to
external fragmentation.

Operating System Concepts 8.15 Silberschatz, Galvin and Gagne ©2009

Address Translation Scheme

m Address generated by CPU is divided into:

e Page number (p) — used as an index into a page table
which contains base address of each page in physical
memory

e Page offset (d) — combined with base address to define
the physical memory address that is sent to the memory
unit

Operating System Concepts 8.16 Silberschatz, Galvin and Gagne ©2009

Address Translation Architecture

logical physical ~
address address @000 S lEla)
ERE— T (D d
A
(111 ... 1111

p{

— physical
memory

page table

Physical address = frame number * frame size (= page size) + offset

Operating System Concepts 8.17 Silberschatz, Galvin and'Gagne ©2009

Address Translation Architecture

Page number Displacement

Virtual address referenced : d
by a running process p » i
3
Page
mapping
mechanism
Main memory ’
-l = : — s 4] J
Ps | Page frame 0 Virtual page p
| ! corresponds to

Y ——— il page frame p”*

Page frame 1

{
d Page frame p” i :
(| Main memory location

-« corresponding to
| virtual address (p, d)

Operating System Concepts 8.18 Silberschatz, Galvin and Gagne ©2009

Logically, continuous
address space

Operating System Concepts

Paging Example

frame
number
page 0 0
01
page 1 1 B 1| page O
2|3
page 2 2
317
page 3 page table 3| page 2
|Ogica| 4 page i
memory
5
6
7| page 3
physical
memory
8.19

Physically, scattered
address space

Silberschatz, Galvin anJ Gagne ©2009

bytes 5

FPomiovxNo sl = O

T OS5 3|—x——|T@Q —\m (@l (mi (= ()

15
flogical memory

page table

0
o
J
k
|
8 m
n
o)
p
12
16
20 | @
b
c
d
] €
——
g
h
28

physical memory

Operating System Concepts

8.20

Paging Example (4 byte page)

Oth page is mapped into 5" frame
by page table

Silberschatz, Galvin anci Gagne ©2009

Free Frames

free-frame list
13 @ 13 [page 1
14 14 [page 0
15 G 15
=
page 0 16 page 0 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
new process new process
& »w 18 G 18 [page 2
19 12 19
13
20 18 20 |page 3
20
21 new-process page table 21
1
(a) (b)

Operating System Concepts 8.21 Silberschatz, Galvin and Gagne ©2009

Implementation of Page Table

m Page table is kept in main memory

m Page-table base register (PTBR) points to the page table

m TBL architecture

Operating System Concepts 8.22 Silberschatz, Galvin andﬂ Gagne ©2009

Implementation of Page Table

m Disadvantage of Page Table scheme

e In this scheme, every data/instruction access requires two
memory accesses.

» One for the page table and one for the data/instruction.

e The two memory access problem can be solved by the use of
a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBS)

Operating System Concepts 8.23 Silberschatz, Galvin and Gagne ©2009

Associlative Memory (TLB)

m Associative memory — parallel search
e Physical feature: SRAM in CPU (similar to D-cache)

Page # Frame #

Address translation (A", A"")
e If A" is in associative register (i.e., TLB), get frame # out
e Otherwise get frame # from page table in memory

Operating System Concepts 8.24 Silberschatz, Galvin and Gagne ©2009

Paging Hardware With TLB

logical

address
CPU —>| p | d |

page frame
0° number number
O
In E .
parallel » TLB hit physical
E address
h 4 ¥
(i [d}—
TLB 1
Y
TLB miss
» f
. physical
memory
page table

Operating System Concepts 8.25 Silberschatz, Galvin and'Gagne ©2009

Effective Access Time

Associative Lookup = ¢ time unit
Assume memory access time is 1 microsecond

®m Hit ratio — percentage of times that a page number is found in the

associative registers; ratio is related to the number of associative
table entry

B Hitratio = o

m Effective Access Time (EAT)
EAT = (e +1) a + (e+2)(1 —)
=2+e—q

—> In this equation, TLB and Page Table is sequentially accessed

Operating System Concepts 8.26 Silberschatz, Galvin and Gagne ©2009

Memory Protection

B Memory access operation protection
e Memory protection can be implemented by associating protection bit
with each frame
e We can add protection bit into each page to indicate read-only or
read-write or other information

Operating System Concepts 8.27 Silberschatz, Galvin and Gagne ©2009

Memory Protection

B Memory access address protection

e To check memory address violation, one additional bit VValid-invalid
bit is attached to each entry in the page table

e ‘“valid” indicates that the associated page is in the process’ logical
address space, and is thus a legal page

e ‘“Invalid” indicates that the page is not in the process’ logical address
space

» = non-continuous & all in memory : next slide example
» = non-continuous & not all in memory : Chap 9

Operating System Concepts 8.28 Silberschatz, Galvin and Gagne ©2009

0 e.g.,
The system with 14bit address
1 :
space and 2KB page size.
2| page0 - 16K address space, so 8 entry
00000] frame number\ jvalld—lnvahd bit N page table (fixed length of page
page s table)
0|12]| v
page 1 113 v 4| page 2
page 2 212 ¥ 5 We have a program that should
S Y use only addresses 0 to 10,468.
page 3 48|V 6
b [BOE v
age 4 7| page 3 . .
bag 6all i Then, 0~5 entry is valid and 6~7
10,468| page s 7 8| page 4 entry is in valid
12,287 page table
9| page b
. Problem still remains. Address
: space between 10468~122877?
page n l.e., Internal fragmentation of
' paging

Operating System Concepts 8.29

