Chapter 8. Module and Process Design (Part II)
Contents

8.6 Reverse Osmosis
8.7 Diafiltration
8.8 Gas Separation and Vapor Permeation
8.9 Pervaporation
8.10 Electro–dialysis (ED)
8.11 Dialysis
8.12 Energy Requirements
8.6 Reverse Osmosis

- Solvent flux \(J_w = A (\Delta P - \Delta \pi) \) (8-6)

 where \(A \) = permeability constant

- Solute flux \(J_s = B (c_f - c_p) \) (8-7)

 where \(B \) = permeability coefficient

- Permeate concentration \(c_p \),

\[
\frac{c_p}{J_w} = \frac{J_s}{J_w} = \frac{B (c_f - c_p)}{J_w} = \frac{B}{J_w + B} \cdot \frac{c_f}{c_f} = \frac{B}{J_w + B}
\] (8-8 & 8-9)

 Combining Eq(8-9) with Eq(8-4) ⇒

\[
R = 1 - \frac{B}{c_f (J_w + B)} = 1 - \frac{B}{J_w + B}
\] (8-10)

 or

\[
\frac{J_w (1 - R)}{R} = B
\] (8-11)

- For high value of retention coefficient \(R > 90\% \)

 Eq(8-11) ⇒ \(J_w (1 - R) = \text{constant} \) (8-12)

『Meaning』 \(\Delta P \uparrow \Rightarrow J_w \uparrow \Rightarrow R \uparrow \)
8.6 Reverse Osmosis

- **Equations for cross-flow RO**
 - **<Assume> Process conditions remain constant**
 - No pressure drop
 - No change in osmotic pressure
 - Rejection coefficient $R \neq f(\text{feed concentration})$
 - **Mass balance under steady state**
 - Water: $q_f = q_p + q_r$ \hspace{1cm} (8-13)
 - Solute: $q_f \cdot c_f = q_p \cdot c_p + q_r \cdot c_r$ \hspace{1cm} (8-14)
 - Eq(8-1) and (8-13) \rightarrow Eq(8-14) \Rightarrow

$$c_r = \frac{(c_f - S \cdot c_p)}{1 - S}$$ \hspace{1cm} (8-15)

where $S = \text{recovery} = \frac{q_p}{q_f}$ \hspace{1cm} (8-1)

<Figure 8-30> Schematical representation of RO process.
8.6 Reverse Osmosis

✓ For segment of <Figure 8-30>

\[c' = \frac{(c_f - S' c_{p'})}{1 - S'} \]

(8-16)

where \(c' \) = retentate concentration of segment

\(c_{p'} = \) average permeate concentration of segment

\[c_{p'} = \frac{1}{S'} \int (1 - R) c' \, dS \]

(8-17)

✓ Substitution of Eq(8-16) into (8-17) ⇒

\[c' = \frac{1}{1 - S'} \left[c_f - \int (1 - R) c' \, dS' \right] \]

(8-18)

✓ Differentiation with respect to \(S' \) ⇒

\[\frac{d[c'(1 - S')]}{dS'} = \frac{dc_f}{dS'} - (1 - R) c' \]

(8-19)

✓ Since \(dc/dS' = 0 \) ⇒

\[(1 - S') \frac{dc'}{dS'} + c' \frac{d(1 - S')}{dS'} = - (1 - R) c' \]

(8-20)

or

\[\frac{dc'}{dS'} = \frac{R \, c'}{(1 - S')} \]

⇒

\[\int \frac{dc'}{c'} = - \int \frac{R \, d(1 - S')}{(1 - S')} \]

(8-21) & (8-22)
8.6 Reverse Osmosis

Integration over the whole system between the boundaries 0 to S and c_f to c_r
- \(c_r = c_f (1 - S)^{-R} \)
- \(c_p = c_f (1 - R)(1 - S)^{-R} \)

Permeate concentration \(\neq \) constant \(\Rightarrow \) use an average permeate concentration \(c_p \)
- Eq(8-15) \(c_r = \frac{(c_f - S \cdot c_p)}{1 - S} \) \(\Rightarrow \) \(c_r = \frac{(c_f - S \bar{c}_p)}{1 - S} \)
- Combining Eq(8-26) with Eq(8-23) \(\Rightarrow \) \(\bar{c}_p = \frac{c_f}{S} \left[1 - (1 - S)^{1-R} \right] \)

Estimation example for RO with 95% retention
- NaCl concentration in feed = 2,000 ppm
- If zero recovery (S = 0) \(\Rightarrow \) permeate salt concentration (\(c_p \)) = 100 ppm from Eq(8-4)
- If 80% recovery (S = 0.8) \(\Rightarrow \) permeate salt concentration (\(c_p \)) = 193 ppm from Eq(8-27)
8.7 Diafiltration

- **Purpose of diafiltration**
 - For complete separation between high MW and low MW solutes
 - Used in biotechnology or the pharmaceutical and food industries

- **Process (dilution mode)**
 1. pre-concentration
 2. Dilute retentate with solvent (water)
 3. Filtration again ⇒ low MW solutes are washed out to permeate

- **Characteristics**
 - Same with other membrane process or membrane operation
 - Design simply to obtain a better purification or fractionation
 - Use UF units

<Figure 8-31> Schematic of diafiltration arrangement.
8.7 Diafiltration

- Comparison of diafiltration with CSTR
 - **CSTR**: all the solutes present (low and high MW) are washed out.
 - **Diafiltration**
 - High MW solutes: retained by membrane
 - Low MW solutes: permeates through the membrane

<Figure 8-32> Schematics of a continuous stirred tank reactor, CSTR (left) and a diafiltration system (right).
<Assume>

- Retain high MW solutes (macro molecule) by UF membrane completely \(R = 1 \)
- Pass low MW solutes (salts) through the membrane \(R = 0 \)
- Add water at a rate equal to the permeation rate \(\Rightarrow \) Volume in feed tank = constant
- Macromolecules remain in the feed tank

Mass balance

- Amount of solute in the feed tank per unit time = permeation rate of the salt
- Water: \(q_w = q_p \) \hspace{1cm} (8-28)
- Solute: \(\frac{q_p c_p}{V_o} = - \frac{dc_r}{dt} \) \hspace{1cm} (8-29)
 where \(c_p = (1 - R) c_r \) \hspace{1cm} (8-30)
 \(R \) = membrane retention for the low MW solute

Integration of Eq(8-29) with boundary conditions

BC 1: \(c_r = c_r^0 \) at \(t = 0 \)
BC 2: \(c_r = c_r^\dagger \) at \(t = t \)

\[
\frac{c_r^\dagger}{c_r^0} = \exp \left[- \frac{q_w t (1 - R)}{V_o} \right] \hspace{1cm} (8-31)
\]
8.7 Diafiltration

✓ Total volume of water at time t: $w = q_w \cdot t$ \hspace{1cm} (8-32)

✓ Substitution of Eq(8-32) into Eq(8-31) ⇒

\[
\frac{c_f^t}{c_f^0} = \exp \left[- \frac{V_w}{V_o} \left(1 - R \right) \right] \hspace{1cm} (8-33)
\]

✓ For low MW, $R = 0$ ⇒ Eq(8-33) ⇒ 37% of low MW solute with water (volume = V_o)

⇒ need at least 5 times of initial volume V_o for > 99% removal of the low MW solute

(or to reduce the ratio c_r^t/c_r^0 to less than 0.01)

✓ In real, $R \neq 0$ ⇒ need more water

✓ CSTR(no membrane) by setting $R=0$

• Eq(8-33) ⇒

\[
\frac{c_f^t}{c_f^0} = \exp \left[- \frac{V_w}{V_o} \right] \hspace{1cm} \text{: Equation for CSTR} \hspace{1cm} (8-34)
\]

• No fractionation is obtained with a CSTR
8.8 Gas Separation and Vapor Permeation

- <Assume>
 - Permeability coefficients = constant
 - Separation occurs under isothermal condition
 - Complete mixing both in feed and permeate ⇒ most simple equations
 - Reasonable only systems operated at low recovery
 - Calculations are dependent on the flow pattern in the module.

- Gas separation systems: resemble with cross-flow conditions
 - Plug flow at the feed side
 - Complete mixing at the permeate side

- Vapor permeation
 - Same approach with gas separation
 - Permeability coefficient = \(f(\text{vapor activity}) \neq \text{constant} \)
8.8 Gas Separation and Vapor Permeation

8.8.1 Gas Separation under Complete Mixing Conditions

- **Complete mixing**
 - Concentrations at feed side = same at any point in the module = retentate concentrations
 - Concentration of permeate side = same at any point (see <Figure 8-33>)

- **Overall mass balance:**
 \[q_f = q_p + q_r \] (8-35)

- **Mass balance for component \(i \)**
 - \(q_{f,i} = q_{p,i} + q_{r,i} \) (8-36)
 - or

- **Recovery (※ use 'cut' or 'stage cut' in gas separation)**
 - \[S = \frac{q_p}{q_f} \] (8-38)
 - Dividing Eq(8-38) by \(q_f \) ⇒ permeate concentration
 \[x_{p,i} = \frac{x_{f,i} - x_{r,i}(1 - S)}{S} \] (8-39)
 and
 \[x_{r,i} = \frac{x_{f,i} - S x_{p,i}}{(1 - S)} \] (8-40)
8.8 Gas Separation and Vapor Permeation

8.8.1 Gas Separation under Complete Mixing Conditions

Flux of a gas i through a membrane assuming perfect mixing

\[
J_i = \frac{P_i}{\ell} \Delta p_i = \frac{P_i}{\ell} \left(x_{r,i} p_h - x_{p,i} p_\ell \right)
\]

(8-41)

where \(P_i \) = permeability coefficient of component i

\(\ell \) = membrane thickness

\(p_h \) = pressure on feed side (high-pressure side)

\(p_\ell \) = pressure on permeate side (low pressure side)

\(x_{r,i} \) = constant mole fractions of component i in feed

\(x_{p,i} \) = constant mole fractions of component i in permeate

Permeate flow rate of component i (q_{p,i})

\[
q_{p,i} = q_p \times x_{p,i} = J_i A = \frac{A P_i}{\ell} \left(x_{r,i} p_h - x_{p,i} p_\ell \right)
\]

(8-42)

and for component j

\[
q_{p,j} = q_p (1 - x_{p,i}) = J_j A = \frac{A P_j}{\ell} \left[(1 - x_{r,i}) p_h - (1 - x_{p,i}) p_\ell \right]
\]

(8-43)
8.8 Gas Separation and Vapor Permeation

8.8.1 Gas Separation under Complete Mixing Conditions

Dividing Eq(8-42) by Eq(8-43) ⇒

\[
\frac{x_{p,i}}{1 - x_{p,i}} = \frac{P_i}{P_j} \left[\frac{x_{r,i} - \frac{P_h}{P_\ell} x_{p,i}}{(1 - x_{r,i}) - \frac{P_h}{P_\ell} (1 - x_{p,i})} \right] \quad (8-44)
\]

where

\[
x_{p,i} = B - \left[B^2 - \frac{\alpha}{(\alpha - 1) P_r} \right] x_{r,i}^{0.5} \quad (8-46)
\]

\[
P_r = \frac{P_i}{P_h} \text{ and } \alpha = \frac{P_i}{P_j} \quad (8-47)
\]

In order to relate \(x_{p,i}\) to \(x_{f,i}\), substitute Eq(8-40) into Eq(8-44) ⇒

\[
\left[P_r (1 - S) (1 - \alpha) + S (\alpha - 1) \right] x_{p,i}^2 + (S - 1) (P_r (\alpha - 1) + 1) + x_{f,i} (1 - \alpha - \alpha \cdot S) x_{p,i} + \alpha \cdot x_{f,i} = 0 \quad (8-48)
\]
8.8 Gas Separation and Vapor Permeation

8.8.2 Gas Separation under Cross-flow Conditions

- **Mass balance over dA for cross-flow model**

 \[
 - d \left(q' \ x'_i \right) = \frac{P_i}{\ell} \left(x'_i \ p_h - x_{p,i} \ p_l \right) dA \quad (8-49)
 \]

 \[
 - dq' \ (1 - x'_i) = \frac{P_i}{\ell} \left[(1 - x'_i) \ p_h - (1 - x_{p,i}) \ p_l \right] dA \quad (8-50)
 \]

 Where superscript ' = high pressure feed side

- **Permeate concentration (x_{p,i})**

 \[
 x_{p,i} = \frac{d (x'_i \ q')}{d (x'_i \ q') + d ([1 - x'_i] \ q')} = \frac{d (x'_i \ q')}{dq'}
 \]

 \[
 (8-51)
 \]

- **For component j**

 \[
 1 - x_{p,i} = \frac{d ([1 - x'_i] \ q')}{d (x'_i \ q') + d ([1 - x'_i] \ q')} = \frac{d ([1 - x'_i] \ q')}{dq'}
 \]

 \[
 (8-52)
 \]

- **Substitution of Eq (8-49) and (8-50) in (8-51) and (8-52)**

 \[
 x_{p,i} = \frac{P_i}{P_j} \left[\frac{x_i}{P_i} - \frac{P_h}{P_l} x_{p,i} \right]
 \]

 \[
 \frac{1 - x_{p,i}}{P_j} \left[(1 - x_i) - \frac{P_h}{P_l} (1 - x_{p,i}) \right]
 \]

 \[
 (8-53)
 \]

 \[
 x_{p,i} = \frac{P_i}{P_j} \left[\frac{x_{r,i}}{P_i} - \frac{P_h}{P_l} x_{p,i} \right]
 \]

 \[
 \frac{1 - x_{p,i}}{P_j} \left[(1 - x_{r,i}) - \frac{P_h}{P_l} (1 - x_{p,i}) \right]
 \]

 \[
 (8-44)
 \]

<Figure 8-34> Flow diagram of a cross-flow design.
8.8 Gas Separation and Vapor Permeation

8.8.2 Gas Separation under Cross-flow Conditions

- **Cross-flow model**
 - Feed concentration = dependent on the place in the module
 - Module to be divided in an infinite number of small modules where complete mixing occurs. ⇒ Cross-flow model = small complete mixing segments are continuously connected.
 - When the feed and retentate concentrations differ quite considerably ($x_r/x_f < 0.5$), the system may be divided into a number of steps with $x_r/x_f = 0.5$ because otherwise the error in the calculations will become too large.

- Log mean average feed concentration x:
 \[\overline{x}_i = \frac{x_{f,i} - x_{r,i}}{\ln\left(\frac{x_{f,i}}{x_{r,i}}\right)} \] \hspace{1cm} (8-54)

- Solving Eq(8-53) ⇒ Composition of the permeate
 \[x_{p,i} = B - \left[B^2 - \frac{\alpha}{(\alpha - 1) P_r} \overline{x}_i \right]^{0.5} \] \hspace{1cm} (8-55)

 where
 \[B = 0.5 \left[1 + \frac{1}{(\alpha - 1) P_r} + \frac{\overline{x}_i}{P_r} \right] \] \hspace{1cm} (8-56)

- Membrane area:
 \[A = \frac{q_{p,i}}{J_i} = \frac{q_p x_{p,i}}{J_i} \] \hspace{1cm} (8-57)
8.9 Pervaporation

- Driving force and permeability coefficient for pervaporation = \(f(\text{temperature and concentration}) \)
- Two process configurations
 - Complete mixing at feed & permeate \(\Rightarrow \) easy calculation
 - Cross-flow at feed & complete mixing at vapor phase
 (More similar to commercial pervaporation systems)

\[\text{Figure 8-35} \] Pervaporation with perfect mixing at feed side and permeate side.
8.9 Pervaporation

- Mass balances

 - Retentate composition from Eq(8-40):
 \[x_{r,i} = \frac{x_{f,i} - S \cdot x_{p,i}}{1 - S} \]
 where recovery \(S = \frac{q_p}{q_r} \)

 - Selectivity for a perfect mixed system with components \(i \) and \(j \)
 \[\alpha_{i/j} = \frac{x_{p,i}}{x_{r,i}} \frac{x_{p,j}}{x_{r,j}} = \frac{x_{p,i}}{x_{r,i}} \cdot \frac{x_{r,j}}{1 - x_{r,j}} \]
 where \(i = \) more permeable component

 - Combination of Eq(8-40) with (8-59)
 \[S(\alpha_{i/j} - 1) x_{p,i}^2 - [x_{f,i} (\alpha_{i/j} - 1) + (1 - S) + \alpha_{i/j} \cdot S] x_{p,i} + \alpha_{i/j} \cdot x_{f,i} = 0 \]
 quadratic in \(x_{p,i} \) and linear in \(x_{f,i} \) and \(S \)

 - \(x_{p,i} \) and \(x_{f,i} \) ⇒ Calculate recovery,
 \[S = \frac{\alpha_{i/j} \cdot x_{p,i} - (\alpha_{i/j} - 1) \cdot x_{f,i}}{x_{r,i} \cdot (x_{p,i}^2 - x_{p,i})} \]
 (8-61)

 - \(x_{p,i} \) and \(S \) ⇒ Calculate \(x_{f,i} \),
 \[x_{f,i} = \frac{(1 - \alpha_{i/j}) \cdot x_{p,i} - (\alpha_{i/j} - 1) \cdot S \cdot x_{p,i}^2 + \alpha_{i/j} \cdot S \cdot x_{p,i}}{\alpha_{i/j} - (\alpha_{i/j} - 1) \cdot x_{p,i}} \]
 (8-62)
8.9 Pervaporation

8.9.1 Complete Mixing in Pervaporation

- **Energy balance**
 - Temperature at feed side = constant for complete mixing.
 - \(q_f c_{p,f} (T_f - T') = q_r c_{p,r} (T_r - T') + q_f c_{p,p} (T_p - T') + \Delta H_{vap} \cdot q_p \) (8-63)
 - Where \(\Delta H_{vap} \) = heat of vaporization and \(c \) = heat capacity
 - Thermal equilibrium between feed & permeate \(\Rightarrow T_r = T_p = T' \)
 - Where \(T' \) = reference temperature (arbitrarily chosen)
 - Eq(8-63) \(\Rightarrow q_f c_{p,f} (T_f - T_r) = \Delta H_{vap} \cdot q_p \) (8-64)

- Flux of component \(i \):
 - \(J_i = \frac{P_i}{\ell} \Delta p_i \) (8-66)

- Liquid feed ≠ ideal generally, but gas phase = assumed to be ideal
 - \(J_i = \frac{P_i}{\ell} \left(x_{r,i} \gamma_i p_i^0 - x_{p,i} p_\ell \right) \) (8-67)
 - Where \(\gamma_i \) = activity coefficient of component \(i \) in the mixture
 - \(P_i^0 \) = saturation pressure of the pure component \(i \) at temperature \(T \)

- From \(x_{r,i} \) and \(x_{p,i} \) \(\Rightarrow \) Calculate flux \(\Rightarrow \) Calculate membrane area from Eq(8-57)
8.9 Pervaporation

- Cross-flow at feed side
 - More realistic pattern
 - Perfect mixing at permeate side

- Difference with complete mixing case
 - Concentration of i at feed = change gradually from feed inlet $x_{r,i}$ to retentate $x_{r,i}$
 - Temperature \downarrow as well across the feed side
 - Permeability coefficient (P_i) = f(concentration & temperature)
 - Divided into a number of segments (permeability coefficient = constant in every segment)

 \Rightarrow Determine P_i at every segment ($\because P_i = f(c, T)$)

- Flux in a certain stage

$$J_i = \left(\frac{\overline{P}_i}{\ell} \right) \left(\overline{x}_i \, \gamma_i \, P_i^0 - x_{p,i} \, P_\ell \right)$$ \hspace{1cm} (8-68)

where $x_i = \text{log mean concentration}$

$P_i = \text{average permeability coefficient}$
8.10 Electro-dialysis (ED)

- Basic requirements of a system
 - Membrane stack (200 ~ 600 cell pair) in series
 - Pumps for feed, dilute and concentrate

- Equations to calculate membrane area required
 - Limiting current density $i_{\text{lim}} \Rightarrow$ main process parameter
 - Operating current density ($i_{\text{actual}} \leq i_{\text{lim}}$
 - Basic equation to remove ions
 \[
 I = \frac{z \, \mathcal{F} \, q \, \Delta c}{\xi} \quad \text{(8-69)}
 \]
 Where \(\mathcal{F} = \text{Faraday const.} (96500 \text{ Coulomb/eq}) \)
 - \(q = \text{flow rate (L/sec)} \)
 - \(\Delta c = \text{concentration difference} \)
 (feed ↔ product stream, eq/L)
 - \(\xi = \text{current utilization} \)

Figure 8-36 Flow diagram for a single-stage ED process.
Current utilization ($\bar{\xi}$) = Number of cell(n) × electrical efficiency

Electrical efficiency ("how efficient the current is used to achieve the separation") depend on

- Efficiency of membrane (η_s) which is determined by membrane selectivity
- Efficiency due to water transport (η_w)
- Efficiency due to leakage of current through the manifold clamping membranes (η_m)
- Electrical efficiency < 1.0 ⇒ a value of 0.9 as a realistic estimate

$$\bar{\xi} = n \cdot \text{(electrical efficiency)} = n \cdot \eta_s \cdot \eta_w \cdot \eta_m$$ \hspace{1cm} (8-70)

Current density, $i = I / A_m$ \hspace{1cm} (8-71)

where $A_m = \text{area of a cation or anion exchange membrane}$

Total area, $A = n \cdot A_m$ \hspace{1cm} (8-72)

Substitution of Eq (8-71) and (8-72) into (8-69) ⇒ Total membrane area required

$$A = \frac{zF q n (c_{\text{feed}} - c_{\text{product}})}{i \cdot \bar{\xi}}$$ \hspace{1cm} (8-73)

Electrical efficiency

$$\text{Electrical efficiency} = \frac{F q \Delta c}{n I}$$ \hspace{1cm} (8-74)
Chapter 8. Module and Process Design (Part II)

8.10 Electro-dialysis (ED)

✓ Total number of cells, \[n = \frac{F \Delta c}{\text{electrical efficiency} \cdot I} \] (8-75)

✓ Energy consumption, \[E = n I^2 R_{cp} \eta \] (8-76) where \(R_{cp} \) = resistance of a cell pair
 \[n = \text{number of cell pairs in a stack} \]

✓ Resistance of a cell(\(R_{cp} \)) = resistance of membrane + solution resistance
 - Solution resistance \(\propto 1/(\text{salt concentration}) \)
 - Low salt concentration in dilute compartment \(\Rightarrow \) determine solution resistance

✓ Combination of Eq(8-69) and (8-76) \(\Rightarrow \) energy consumption
 \[E = \frac{n I z F R_{cp} \Delta c q t}{\xi} \] (8-77)

as a function of
 - Applied current
 - Current utilization
 - Electrical resistance
 - Amount of salt removed

✓ Total energy consumption = ionic transfer + pumps for
 - concentrated stream
 - depleted streams
 - anode- and cathode-rinse solutions

✓ Energy consumption, \[E_p = \frac{q_v \Delta P}{\eta} \] (8-78)

where \(E_p \) = energy requirement of the pump, \(q_v \) = flow rate
\[\Delta P = \text{pressure drop} \quad \eta = \text{pump efficiency} \]
Hemodialysis in artificial kidney

- Remove toxic small MW metabolites (urea, creatinine, uric acid and others)
- Flow
 - Feed stream: blood
 - Solvent stream (Dialysate): contains vital salts (Na, K, Ca, Mg)

Diffusion dialysis

- Remove protons (H\(^+\)) or hydroxyl ion (OH\(^-\)) from an aqueous stream
- Flux of solute \(i\) through the membrane, \(J_i = k_{i,ov} (c_{f,i} - c_{d,i})\) (8-79)

 where \(c_{f,i}\) and \(c_{d,i}\) as the average feed and dialysate concentration

 \[k_{i,ov} = \text{overall mass transfer coefficient from a resistance model} \]

- Resistance model:
 \[
 \frac{1}{k_{i,ov}} = \frac{1}{k_{i,feed}} + \frac{1}{k_{i,dial}} + \frac{\ell}{P_i} \]
 (8-80)
 where \(k_{i,feed}\) = mass transfer coefficient of solute in feed boundary layer

 \(k_{i,dial}\) = mass transfer coefficient of solute in dialysate boundary layer

 \(\ell\) = membrane thickness

\(P_i\) = permeability coefficient of solute \(i\)

Figure 8-37 Schematic of a counter-current flow.
8.11 Dialysis

- **Transfer rate of component** \(i \) **through membrane**:
 \[q_i = k_{i,ov} A (c_{f,i} - c_{d,i}) \]
 (8-81)

- **Logarithmic mean \(\Delta c \) and for a counter-current flow**
 \[
 \frac{(c_{f,i} - c_{d,i})}{c_{i}^{\text{in}} - c_{i}^{\text{out}}} = \frac{\ln \left(\frac{c_{f,i} - c_{d,i}}{c_{f,i} - c_{d,i}} \right)}{\ln \left(\frac{c_{f,i}^{\text{out}} - c_{f,i}^{\text{in}}} {c_{f,i}^{\text{out}} - c_{f,i}^{\text{in}}} \right)}
 \]
 (8-82)

 Furthermore
 \[q_i = q_f (c_{f,i}^{\text{in}} - c_{f,i}^{\text{out}}) = q_d (c_{d,i}^{\text{out}} - c_{d,i}^{\text{in}}) \]
 (8-83)

- **Removal efficiency**:
 \[
 \frac{(c_{f,i}^{\text{in}} - c_{f,i}^{\text{out}})}{(c_{f,i}^{\text{in}} - c_{f,i}^{\text{in}})} = \frac{1 - \exp \left[\frac{k_{i,ov} A}{q_f} \left(1 - \frac{q_f}{q_d} \right) \right]}{q_f - \exp \left[\frac{k_{i,ov} A}{q_f} \left(1 - \frac{q_f}{q_d} \right) \right]}
 \]
 (8-84)

- **For co-current flow, Eq(8-82)**
 \[
 \frac{(c_{f,i} - c_{d,i})}{c_{f,i}^{\text{in}} - c_{f,i}^{\text{out}}} = \frac{(c_{f,i}^{\text{in}} - c_{d,i}^{\text{in}})}{(c_{f,i}^{\text{out}} - c_{d,i}^{\text{out}})}
 \]
 (8-85)

- **Fractional solute removal**:
 \[
 \frac{(c_{f,i} - c_{f,i}^{\text{out}})}{(c_{f,i}^{\text{in}} - c_{f,i}^{\text{in}})} = 1 - \exp \left[- \frac{k_{i,ov} A}{q_f} \left(1 + \frac{q_f}{q_d} \right) \right]
 \]
 (8-86)
8.12 Energy Requirements

- Driving force $\uparrow \Rightarrow$ energy consumption $\uparrow \Rightarrow$ flux $\uparrow \Rightarrow$ membrane area $\downarrow \Rightarrow$ investment cost \downarrow
- 2nd law of thermodynamics \Rightarrow determine minimum amount of work of separation process
- Reversible separation process \Rightarrow requires as much as work as a reversible mixing process
- Actual energy consumption \Rightarrow this minimum energy for separation

<Figure 8-38> Schematic of capital cost (investment) and energy cost as a function of driving force.
8.12 Energy Requirements

Low pressure application (MF/UF)

- Severe concentration polarization and fouling ⇒ Need high mass transfer in boundary layer
 - High cross flow velocity ↑ ⇒ Use 2 pumps (one for pressurizing and other for circulation)
- Low hydrodynamic pressures ⇒ Use circulation pump = major energy consumption
- Energy consumption to pressurize a liquid from P_1 to P_2:
 \[E_p = \frac{q_v \Delta P}{\eta} \]
 (8-87)
 where q_v = flow rate (m³/sec), ΔP = pressure drop (N/m²), η = pump efficiency ($0.5 \leq \eta \leq 0.8$)

High pressure applications (RO/NF, especially SWRO)

- Need turbine to recover energy
- $Et = -\eta q_v \Delta P$
 (8-88)
 η = Turbine efficiency ($0.5 \leq \eta \leq 0.8$)

Figure 8-39 Schematic of power devices applied in pressure driven membrane processes
8.12 Energy Requirements

- Processes using partial pressure difference as the driving force
 - Application process: Gas separation, Pervaporation, Vapor permeation
 - Compressor: pressurize the feed to a few bar
 - Vacuum pump at the permeate side: adjust the partial pressure difference

- Compression
 - <Assume> 1. Ideal gas (※ in real, gas = non-ideal)
 - 2. Isothermal compression (※ in real, gas = adiabatic compression)

- Power:
 \[E = - \frac{1}{\eta} \int n \, RT \, dP = - \frac{n \, RT}{\eta} \ln \left(\frac{P_2}{P_1} \right) \]
 \[(8-89) \]
 where \(n = \text{mol/s} \)

- Vacuum pump
 - Same equations apply as for the compressor

<Figure 8-40> Schematic of gas separation
Dialysis and diffusion dialysis

✓ Low energy consuming membrane processes
✓ Pumps to circulate feed and dialysate ⇒ Energy consumption (E_p) [Eq(8-87)]