1차원 파동방정식의 모델링
물리적 가정
1. 단위 길이당 현의 질량은 일정하다(균일한 현). 현은 완전 탄성체이며, 침 때 어떠한 저항도 나타내지 않는다.
2. 현의 양끝을 고정 시키기 전에 현을 잡아당긴 장력이 매우 커서 현에 작용하는 중력(현을 아래로 약간 당기는 힘)은 무시할 수 있다.
3. 현의 운동은 수직평면 내에서 미소횡진동(small transverse motion)이다. 즉 현의 모든 입자는 정확하게 수직으로 움직인다.

\[u\nu = c^2 u_{xx} \]
\[(\gamma) \quad u(0, t) = 0, \quad (\nu) \quad u(L, t) = 0 \text{ (모든 } t \text{에 대하여) (경계조건)} \]
\[(\gamma) \quad u(x, 0) = f(x), \quad (\nu) \quad u_t(x, 0) = g(x) \quad (0 \leq x \leq L) \text{ (초기조건) } \]

(4)를 \(t \) 와 \(x \) 에 관하여 미분하면

\[u_{tt} = F\ddot{G}, \quad u_{xx} = F''G \]

따라서 이것을 방정식 (1) 에 대입하면

\[F\ddot{G} = c^2 F''G \]

위의 양변을 \(c^2 FG \) 로나누면

\[\frac{\ddot{G}}{c^2 G} = \frac{F''}{F} \]

이고, 원쪽은 \(t \) 에 관한 함수이고, 오른쪽은 \(x \) 에 관한 함수이므로 그것은 상수가 되어야만 한다. 이를 \(k \) 라고 놓자.

이로부터 두 개의 아래 상미분방정식을 얻는다.

\[F'' - kF = 0 \]
\[\ddot{G} - c^2 kG = 0 \]

\(u = FG \) 가 경계조건을 만족하므로 이로부터

\[F(0) = 0, \quad F(L) = 0 \]

이로부터 \(k \) 는 반드시 음수가 되어야만 한다.
따라서

\[k = -p^2 \text{ 이라고 놓자.} \]
그러면 식 (5)는 \(F'' + p^2 F = 0 \) 이고 일반해는
\[
F(x) = A \cos px + B \sin px
\]
이다.

식 (7)로부터
\[
F(0) = A = 0, \quad \text{따라서} \quad 0 = F(L) = B \sin pL
\]
\[F \neq 0 \text{이므로} \quad B \neq 0 \text{이어야만 한다.} \quad \text{따라서} \quad \sin pL = 0 \quad \text{이고,}
\]
\[
pL = n\pi \quad \text{따라서} \quad p = \frac{n\pi}{L} \quad (n \text{은 정수})
\]
\[B = 1 \text{이라 놓으면 (5)의 무한히 많은 해} \quad F(x) = F_n(x) = \sin \frac{n\pi}{L} x \quad (n = 1, 2, 3, \ldots) \text{를 얻는다.}
\]
\[\text{그리고} \quad k = -p^2 = - \left(\frac{n\pi}{L} \right)^2 \text{이 되고, 식 (6)은}
\]
\[
\ddot{G} + \lambda_n^2 G = 0, \quad \lambda_n = cp = \frac{cn\pi}{L}
\]
이 방정식의 일반해는
\[
G_n(t) = B_n \cos \lambda_n t + B_n^* \sin \lambda_n t
\]
따라서 식 (2)를 만족하는 식 (1)의 해는
\[
u_n(x, t) = F_n(x)G_n(t) = G_n(t)F_n(x) \quad \text{이고}
\]
\[\text{(8)} \quad u_n(x, t) = (B_n \cos \lambda_n t + B_n^* \sin \lambda_n t) \sin \frac{n\pi}{L} x \quad (n = 1, 2, \ldots)
\]
이들 함수들은 진동현의 고유함수(eigenfunction) 또는 특성함수(characteristic function)라 부르고, \(\lambda_n = \frac{cn\pi}{L} \) 를 고유값(eigenvalue) 또는 특성값(characteristic value)이라고 부른다.
또, 집합 \(\{\lambda_1, \lambda_2, \ldots\} \) 를 스펙트럼(spectrum)이라고 부른다.
각각의 \(u_n \) 은 단위시간당 진동수 주파수 \(\frac{1}{\text{period}} = \frac{\lambda_n}{2\pi} = \frac{cn}{2L} \) 을 갖는 조화운동(harmonic motion)을 나타내고, 이를 한의 \(n \) 차 정규진동(nth normal mode)이라고 한다. 이 때, \(1 \text{차 정규진동} \) 기본진동(fundamental mode, \(n = 1 \))이라 하고, 다른 것은 배진동(overtone)이라고 한다.
식(1)은 제차 선형 편미분방정식으로 기존정리에 의하여 식(8)에 나타나는 함수들의 유한개 항들의 합은 식(1)의 해가 된다.

초기조건 (3)을 만족하는 해를 얻기 위해 무한급수(\(\lambda_n = \frac{cn\pi}{L}\))

\[
(9) \quad u(x, t) = \sum_{n=1}^{\infty} u_n(x, t) = \sum_{n=1}^{\infty} \left(B_n \cos \lambda_n t + B_n^* \sin \lambda_n t \right) \sin \frac{n\pi}{L} x
\]

를 생각해 보자.

식 (9)는 초기조건 (3-1)을 만족시키아하므로

\[
f(x) = u(x, 0) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi}{L} x
\]

을 얻는다. 따라서 \(u(x, 0)\)가 \(f(x)\)의 푸리에 사인 급수가 되도록 계수 \(B_n\) 을 선택해야만 한다.

따라서, \(B_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi}{L} x \, dx \quad (n = 1, 2, \ldots)\)이다.

또한 식 (9)는 초기조건 (3-2)을 만족시키아하므로

\[
B_n^* \lambda_n = \frac{2}{L} \int_0^L g(x) \sin \frac{n\pi}{L} x \, dx \quad (n = 1, 2, \ldots)
\]

\(u(x, 0)\)가 \(g(x)\)의 푸리에 사인 급수가 되도록 계수 \(B_n^*\) 를 선택해야만 한다.

특히, \(g(x) = 0\) 인 경우 \(B_n^* = 0\) 이다.

따라서,

\[
u(x, t) = \frac{1}{2} \sum_{n=1}^{\infty} B_n \sin \left(\frac{n\pi}{L} (x - ct) \right) + \frac{1}{2} \sum_{n=1}^{\infty} B_n \sin \left(\frac{n\pi}{L} (x + ct) \right)
\]

로 정리 된다.

그리고 위의 급수는 \(f(x)\)에 대한 푸리에 사인 급수에 변수 \(x\) 대신 \(x - ct, x + ct\) 를 각각 대입하여 얻어지는 아래 형태로 쓸 수 있다.

\[
u(x, t) = \frac{1}{2} \left(f^*(x - ct) + f^*(x + ct) \right)
\]

여기서 \(f^*\)는 주기가 \(2L\) 인 \(f\) 의 기주기 확장이다.
1차원 파동방정식의 D'Alembert 해
Line Integral[선적분]

주목1: \[\int_C F \cdot d\vec{r} = \int_C F \cdot T\,ds \] 이므로 적분 방향이 반대일 때 호의길이(곡선의 길이)에 대한 적분이 변하지 않더라도 \[\int_C F \cdot d\vec{r} = -\int_C F \cdot d\vec{r} \] 이다. 그 이유는 \(C \) 가 \(-C\) 로 바뀌면 단위 접선 벡터 \(T \) 가 \(-T\) 로 바뀌기 때문이다.

주목2: 벡터 \(\overrightarrow{r_0} \) 의 종점에서 시작하여 벡터 \(\overrightarrow{r_1} \) 의 종점에서 끝나는 선분의 방정식은 다음처럼 주어진다.
\[\overrightarrow{r}(t) = (1-t)\overrightarrow{r_0} + t\overrightarrow{r_1} \quad (0 \leq t \leq 1) \]

주목3: \[\int_C F \cdot d\vec{r} = \int_C P\,dx + Q\,dy + R\,dz, \text{ 단 } F = P\vec{i} + Q\vec{j} + R\vec{k} \]

선적분에 대한 기본정리: \(C : \overrightarrow{r}(t) = < x(t), y(t) >, (a \leq t \leq b) \) 는 부드러운 곡선이고 \(f \) 는 두 개 또는 세 개의 변수를 가진 미분가능한 스칼라 함수라고 하자. 그리고 그 것의 그래디언트 벡터 (기울기 벡터) \(\nabla f \) 는 \(C \) 상에서 연속이라고 하자. 이 때 다음이 성립한다.
\[\int_C \nabla f \cdot d\vec{r} = f(\overrightarrow{r}(b)) - f(\overrightarrow{r}(a)) \]

증명:
\[\int_C \nabla f \cdot d\vec{r} = \int_a^b \nabla f(\overrightarrow{r}(t)) \cdot \overrightarrow{r}'(t)\,dt \]
\[= \int_a^b \left(\frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt} \right) dt \]
\[= \int_a^b \frac{d}{dt} f(\overrightarrow{r}(t))\,dt \quad (\text{연쇄법칙}) \]
\[= f(\overrightarrow{r}(b)) - f(\overrightarrow{r}(a)) \]

주목4: 벡터장 \(F \) 가 영역 \(D \) 를 가진 연속인 벡터장이고, \(D \) 에서 폭각은 사점과 폭각은 폭각을 가진 임의의 두 경로 \(C_1 \) 과 \(C_2 \) 에 대해
\[\int_{C_1} F \cdot d\vec{r} = \int_{C_2} F \cdot d\vec{r} \]
이면 선적분 \(\int_C F \cdot d\vec{r} \) 이 경로의 독립(independent of path)이라고 한다. 따라서 보존적 벡터장의 선적분은 경로의 독립이다.
주목5: \(\int_C \mathbf{F} \cdot d\mathbf{r} \) 이 영역 \(D \) 안에서 경로의 독립이기 위한 필요충분 조건은 임의의 닫힌 곡선(경로) \(C \) 에 대하여 \(\int_C \mathbf{F} \cdot d\mathbf{r} = 0 \) 이다.

주목6: 벡터장 \(\mathbf{F} \) 가 열린 연결 영역 \(D \) 에서 연속인 벡터장이고, \(\int_C \mathbf{F} \cdot d\mathbf{r} \) 이 \(D \) 안에서 경로의 독립이면 이 때 \(\mathbf{F} \) 는 \(D \) 에서 보존적 벡터장이다. 즉, \(\nabla f = \mathbf{F} \) 가 되는 스칼라 함수 \(f \) 가 존재한다.

주목7: \(P \) 와 \(Q \) 가 영역 \(D \) 안에서 연속인 일계 편도함수를 가지고, \(F(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j} \) 가 보존적 벡터장이라 하면 이 때 \(D \) 안에서 다음과이 성립한다.

\[
\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}
\]

주목8: 벡터장 \(\mathbf{F} = Pi + Qj \) 가 열린 단순연결영역 \(D \) 안에서 벡터장이고, \(P \) 와 \(Q \) 가 \(D \) 안에서 연속인 일계 편도함수를 가지며, \(\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \) 를 만족시키면 \(\mathbf{F} \) 는 보존적 벡터장이다.

문제1: (a) \(P(x, y) = (3 + 2xy) \mathbf{i} + (x^2 - 3y^2) \mathbf{j} \) 일 때, \(\nabla f = \mathbf{F} \) 가 되는 잡계적 함수 \(f \) 를 구하시오.

(b) \(\int_C \mathbf{F} \cdot d\mathbf{r} \) 의 값을 구하시오, 여기서 \(C : r(t) = e^t \mathbf{i} + e^t \mathbf{j}, \quad (0 \leq t \leq \pi) \)

문제2: \(F(x, y, z) = (y^2, 2xy + e^{2z}, 3ye^{2z}) \) 일 때, \(\nabla f = \mathbf{F} \) 가 되는 잡계적 함수 \(f \) 를 구하시오.