Chapter 11: RISK NEUTRAL
TREES AND DERIVATIVE
PRICING



11.1 RISK NEUTRAL TREES

« 11.1.1 The Ho-Lee Model

« 11.1.2 The Simple Black, Derman and Toy (BDT)
Model

 11.1.3 Comparison of the Two Models

« 11.1.4 Risk Neutral Trees and Interest Rates



11.1.1 THE HO-LEE MODEL

» The Ho-Lee model is one of the simplest models that
exactly fits the term structure of interest rates

« The model is specified as follows: let r;; be the

N
continuously compounded interest rate in node j between
stepsiand i + 1:

Fis1 = Iijt 6, X A+ o X (A)
Fivgjr1 = Iijt 6, X A—o X (A)*
with R.N. probability p* =%

» Recall that on multistep trees we denote:

P; (k) = Bond price at time I In node J with maturity at
(step) K



11.1.1 THE HO-LEE MODEL

« An example:
= Consider the term structure of interest rates on January 8, 2002: the zero coupon
bhon;j e>;piring ondate k=1 is Py(1) = 99.1338, implying r, = 1.74% (the root of
the tree
= In the data, the zero coupon bond expiring on date k = 2 is Py(2) = 97.8925
= \We now choose 6, so that the binomial tree exactly gives P,(2) as price
ro=1.74%+ 6, X A+ o(A)2 with RN probability p" =%
r,=174% + 0, X A—o(A)%2 with RN probability p* = %
at the time the data gave ¢ = 0.0173
= We can now choose 4, so that the following equation is satisfied
07.8925 = eTo*A X (0.5 X eTo*A + (0.5 X e":*4) X 100
Price of zero in the data = Risk neutral price from binomial tree
= Givenry=1.74%and ¢ =0.0173, r; , and r, , depend only on the level of 4,
= Thus, we have one equation with one unknown
= Using a search algorithm, we find 6, = 1.5674%
= Given this value for 6,, the two interest rates are r, , = 3.75% and r, ; = 1.30%.



11.1.1 THE HO-LEE MODEL

« An example (cont’d):

m]

m]

In the data, the zero coupon expiring on date k = 3 has price P,(3) = 96.1462
Keeping 6, as determined in the previous step, we now look for 6, such that the
tree exactly yields a price Py(3) = 96.1462
Rather than using an equation to find 6,, we use the binomial tree itself;
specifically, let us set up a three-step binomial tree for a given 6,,e.9. 6, =0
This tree will provide a bond value different from the one that we need
However, we can then vary €, until we reach the correct value for the bond
Table 11.1 shows the result:
. g)n tf(])e left-hand side there is an interest rate tree and bond price for the case in which
. Oln the right-hand side of the table, instead, there is the interest rate tree and the bond
price for the 6, that exactly matches the bond price in the data for maturity k = 3

As can be seen comparing the two trees, the one on the right-hand side has
nodesr,,, I', ; and r, , that are higher than the corresponding nodes on the left-
hand side ’

6, had to be chosen greater than 0 to match the term structure of interest rates



Table 11.1 Two Trees for a Zero Coupon Bond Expirmg on b = 3

Price to Match [ 96.1462

& =10

Optimal #; = 0.021824

Interest Fate Tree
1.74% 3.75% 407%
1.30% 2.52%
0.08%

Zero Coupon Bond Price

00,6722 903241 9753455
0B.7008 987461
00.9614

100
100
100
100

Interest Rate Tree
1.74% 3.75% 6.06%
1.30% 3.61%
1.17%
Zero Coupon Bond Price
06.1462 | 958000 97.0147

08.1727 0982088
004175

100
100
100
100




11.1.1 THE HO-LEE MODEL

(cont.)

Table 11.2 The Risk Neutral Ho-Lee Interest Eate Tree

Tme T 0 0.5 1 1.5 2 25 3 35 4 4.5 5
Period i 0 1 2 3 4 5 6 7 8 9 10
@i =100y 15675 21824 14374 17324 07873 00423 -00628 04322 09271 0.1202
_I:J:I_ 1.74 3.75 6.06 §00 1009 1191 1295 1415 1539 1727 1856
1 1.30 361 5.56 1.65 0.26 1051 1170 1314 14837 16.11
2 1.17 311 5.20 6.82 8.06 025 1069 1238 13166
3 0.66 275 437 5.61 6.81 825 993 1122
4 031 1.92 3.17 4.36 5.80 149 877
3 -0.52 0.72 1.91 3.35 304 632
6 173 03533 091 259 388
7 298 154 013 143
8 -399 230 -1.02
a .
10

5.01




11.1.2 The Simple Black, Derman
and Toy (BDT) Model

« The main drawback of the Ho-Lee model is that it
allows negative interest rates

« The BDT solves this by defining:

zi; = In(r;;)
« Then for zi1,] we have the process:
Zit1 =2+ 0, X A+ o X (A)
Zivpjor =2t 0 X A—o X (A)

with R.N. probability p* = 1/2
- While z;; can be negative, r;; Is always positive



11.1.2 The Simple Black, Derman
and Toy (BDT) Model

« An example:

= The strategy to fit the term structure of interest rates is the same as for
that of the Ho-Lee model
- First look for 6, that yields exactly the price of a bond maturing on k = 2
. Thekn, v:\%/e move to find 6, that fits exactly the price of the bond maturing
onk=
+ And so on
= Table 11.3 shows the risk neutral tree

= The important detail to notice is the level of ¢ that we need to choose for
the model

= Note that differently from the Ho-Lee model, now o Is the volatility of
log-interest rates z; = log(r;)

= As such, it must be estimated from a log interest rate series

= Taking log differences in monthly interest rates from 1961/12 to

2001/12, we obtain an (annualized) level of volatility equal to o =
21.42%.



11.1.2 The Simple Black, Derman

and Toy (BDT) Model (cont.)

Table 11.3 The Risk Neutral Simple Black, Derman, and Tov Interest Rate Tree
fime T’ 0 0.5 1 1.5 2 25 3 3.5 45 5
peniod i 0 1 2 3 4 5 6 7 9 10
B:(=«100) 7182 6916 3348 3379 1182 230 438 455 -1.26
JIZI 1.74 2.90 477 6.56 9.03 11.15 123835 1460 2136 2493
1 214 3.52 4234 6.67 8.24 047 10.78 1502 1841
2 2.60 358 493 6.08 7. 197 11.76 13.60
3 2.64 364 4.49 5.17 5.88 869 1005
4 2.69 3.32 3.82 433 642 742
5 245 2.82 53.21 474 548
6 2.08 237 3.50 403
7 1.75 2.59 299
g 1.91 221
o 141 1.63
10

121




11.1.3 Comparison of the Two
Models

By construction, the two models are equally able to fit the
term structure of interest rates

- However, the two models generate important differences in the
Implied risk neutral probability distribution of interest rates in
the future
= The Ho-Lee model gives non-zero probability to negative interest
rates, and small probability to high interest rates

= The Simple BDT model gives essentially zero probability to
Interest rates below 1%, but assigns higher probability to high
Interest rates

 These differences are not important for bond prices, as both
models exactly match the term structure of interest rates

« However, they will generate important differences for other
securities that have asymmetric payoff structures, such as
options



11.1.3 Comparison of the Two
Models (cont.)

Figure 11.1 The Risk Neutral Distribution of Interest RatesatT = 5
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11.1.3 Comparison of the Two
Models (cont.)

Consider a structured bond with payoff:
max(11 x 100 X r;, 94)
Under each model specified we get:
Price under Ho-Lee: $80.0645
Price under BDT: $78.9135
The lower price in the Simple Black, Derman and Toy model
hlghllghts the differences of the model:

= Although the positive skewness of the risk neutral distribution in
the BDT model implies a higher risk neutral expected payoff for
the Simple BDT model, the higher interest rates implied by the
model also imply a higher discount applied to the payoff.

= The higher discount effect more than compensates for the higher
expected return



11.1.4 Risk Neutral Trees and
Future Interest Rates

There Is often a temptation to interpret too much from the
Implied risk neutral interest rate trees

Remember that a risk neutral interest rate tree’s only purpose

IS to compute the price of interest rate securities through no
arbitrage

This has little to do with the real world expectation of future
Interest rates

It should be noted that:

= The BDT model does not allow enough (risk neutral) probability
mass to low interest rates, which makes this model underperform
In low interest rate environments

= In contrast, the Ho-Lee model allows perhaps too much (risk
neutral) probability to low interest rates, and in fact even to
negative interest rates

Derivative security prices are very sensitive to this
distributional differences



11.2 USING RISK NEUTRAL TREES

« 11.2.1 Intermediate Cash Flows
« 11.2.2 Caps and Floors
« 11.2.3 Swaps

 11.2.4 Swaptions



11.2.1 Intermediate Cash Flows

- Glven a tree, we can insert any type of known cash
flow:

Pij=emiXAX (b Py +¥% Py + CR(i+1))
where CF(i+1) is the cash flow paid at time i1+1



11.2.1 Intermediate Cash Flows

« An example:

[m]

[m]

[m]

[m]

Consider the price of a 1.5-year, 3% coupon bond on January 8, 2002
use the Simple Black, Derman, and Toy interest rate model
We calculate the price of the coupon bond using the tree in Table 11.4

In each step, we add the cash flow CF(i + 1) = 1.5 (= 3% X 100/2) to the
price in the following period, and take the present value

So, for example the value of the bond if the interest rate goes up twice
(tor, , =4.77%) Is equal to the present value of the bond value in the
next period, equal to $100, plus the coupon to be received next period,
equal to $1.5

The present value is then P, ,, = $99.1094

The prices on the tree are ex-coupon prices, that is, the price of the bond
right after the coupon has been paid



11.2.2 Caps and Floors

 Aplain vanilla cap with maturity T, strike rate r,, and notional
N Is a security that pays a stream of cash flows at given dates
T,, T,, ..., T, =T, according to the formula:

CF(T))=A X N X max(r,(T—A) —r, 0)
Where n 1s the number of payments per year and A= 1/n=T, —
IS the amount of time between payments and r,(T) Is a

reflerence floating rate with compounding frequency n (e.g. the
6-month T-bill rate or LIBOR)

« A plain vanilla floor pays cash flows according to:
CF(T))=A X N X max(rx—r.(T,—A), 0)
- It is important to note that cash flows occurring at T, are
determined at the previous node T; — A
 Caps and floors are easily priced through trees



11.2.2 Caps and Floors (cont.)

« Consider a cap where cash flow is determined by:
CF(T)) =A X N X max(r.(1,]) — ry, 0)
where:
(i) =n % (e x A1)
IS corresponding interest rate with compounding
frequency n
 Given these cash flows, we use the backward recursive
formula to obtain the value of the cap along the tree
» V;; = Value at time/node (i,)) of cash flows at times k > |

o Vij = e A X (b Vg +% Vi + CFy (i +1))



11.2.2 Caps and Floors (cont.)

« An example:

 Consider the value on January 8, 2002, of a 1.5-years cap, with semi-
annual payment (n =2, A= 0.5), and with strike rate r, = 3% (notional N =
100); we apply the Simple Black, Derman, and Toy risk neutral tree

« We proceed in two steps:

= Cash Flow Tree: The first step to obtain the price of the cap is to build a cash
flow tree, that is, a tree that defines the cash flow that is determined (not paid) in
a given node (i,)) (see tree in Table 11.5)

The cash flow tree in this table also shows not only the time of the formation of
the cash flows, but also when they would be paid (i.e., one period later)

The corresponding semi-annually compounded interest rate is:
r,(2,uu) =2 x (e477%/2 — 1) =4.82%
Thus, the cash flow determined at time/node (2,uu) is:
C,u(3)=100/2 X max(4.82% — 2.5%, 0) = 1.162

Note, however, this cash flow is not paid at time (2,uu) but at time i = 3, as the
tree shows

= Cap Value Tree: Given the cash flow tree, we can compute the value of the cap
by using the backward formula

Th$e resulting tree is in Table 11.6; we obtain a value of the cap at time 1 = 0: V,
= $0.647



Table 11.5 The Cash Flow Tree of a 1.5-Year Cap
i =1 i=1 i=2 i =3
t =100 = 0.5 t=1 t=1.5
o ue = 4.7T%
ra (2, uu) = 4.82%
CFy .. (3) = 1.162 — paid here
r1,u = 2.90%
ra(l, u) = 2.92%
rg = 1.74% M ud = 3.02%
r2(0) = 1.75% ra (2, ud) = 3.55%
CFpi(l) =0 C'Fa .4 (3) = 0.526 — paid here
r1,d = 2.14%
r2(1l,d) = 2.15%
CFiq4(2)=0
ra.4d = 2.60%
ra(2, dd) = 2.62%
CFy g4 (3) = 0.059 — paid here




Table 11.6 The 1.5-Year Cap Value Tree

Vp=e ' 1%/2

% [3 (1.021 + 0.285) 4 0)

= 0.647

. — D]
Vig = e F1%/2y

x [ (0.517 +|:1.|:1.J.ﬁ,. +0]
— (.285

2 oud

e~ 35202 L nB9E — 1.517

] =

i =0 i i =3
t=10 t =0.5 t=1 i=15
.-"_1_4:1_:._ ) ~ N, \ — )
— T2 i 1162 = 1135 | GF2ee() = 1162
Vi = e 290%/2
x5 (1.135 4+ 0.517) + 0.210]
— 1.021

CF..a(3) = 0.526

-~

—2E0%/2 0,050 = 0.058

CF3 44(3) = 0.058




Table 11.7 A 5-Year Cap

Panel A: Cash Flow Tree

Period i 0 1 2 3 4 5 6 7 8 o

Node j
0 000 021 116 208 337 448 537 632 783 1013
1 000 053 120 214 295 360 420 538 704
2 006 055 125 184 231 281 361 481
3 008 059 102 137 174 231 319
4 010 042 068 095 137 201
5 000 017 037 068 115
6 000 000 017 052
7 000 000 005
8 000 000
9 0.00

Panel B: Cap Value Tree

Period i 0 1 2 3 4 5 6 7 8 o

Node j
0 044 1219 1510 1735 1893 1944 1889 1720 1433 010
1 686 921 1125 1276 1342 1325 1225 1022 6.50
2 464 645 789 868 882 833 T06 453
3 284 413 500 540 532 465 305
4 146 224 279 303 283 195
5 052 092 130 147 112
6 012 023 044 051
7 001 003 005
8 000 000
9

0.00




11.2.3 Swaps

« Valuation of swaps can be obtained from the discount

factor, yet understanding the dynamics of the value of
the Interest rate swap on an interest rate tree Is

Instrumental to obtaining the price of other interest
rate derivatives

 The cash flow for a plain vanilla swap Is:
CF(T) =A X N X (ry(T; —A) — )
where c Is the swap rate



11.2.3 Swaps (cont.)

- The methodology to value a swap is identical to the one
used to value a cap
s Compute the cash flow tree using
CFj(i+1) = A x N X (r,(i.j) —c)
where recall
ro(ij) =n x (e x A1)
= Compute the value of the swap on the tree as the present

value of the risk neutral expectation of future cash flows by
moving backward on the tree:

Vijlk,c)= e A X (o Vi kic) +% Vi jaa(kc)+ CFi (i +1))

where: V; ;(k,c) = Value of the swap In (1,J) with maturity (k)
and swap rate c



11.2.3 Swaps (cont.)

« An example:

= Consider a 5-year fixed-for-floating swap on January 8, 2002, defined
on the 6-month T-bill rate and with semi-annual payments; the swap rate

IS:
~11-z(0,0) 10)

23020
= Recall that this swap rate is the one that makes the value of the interest

rate swap equal to zero at inception

= Glven the Simple Black, Derman and Toy, we obtain the cash flow tree
and swap value tree in Panels A and B of Table 11.8, respectively

= The comforting fact is that the root of the swap value tree, in Panel B,
Indeed gives V, = 0, as it should be from the definition of c

= This is not surprising, as the tree used to value this swap was calibrated
to zero coupon bonds

= However, we have confirmation that the tree methodology works, as it
correctly values the interest rate swap

=4.49%



Table 11.8 A 5-Year Swap Tree

Panel A: Cash Flow Tree

Period i 0 1 2 3 4 5 6 7 8 g

Node 5
0 -137 078 017 109 238 349 438 533 683 014
1 -1.17 047 021 1.15 196 261 330 439 o6M4
2 093 044 0325 08 132 182 261 3381
3 091 -041 003 037 074 132 220
4 -0.80 -057 -032 005 038 102
5 -101 082 -063 031 015
6 -120 -105 -082 -048
7 -136  -120 -094
8 -147  -128
9 -1.54

Panel B: Swap Value Tree

Period i 0 1 2 3 4 5 6 7 8 g

Node j
0 000 427 818 1138 1386 1522 1550 1472 1258 820
1 -153 204 504 748 9203 oM 058 842 558
2 279 005 24 414 518 558 521 360
3 -383  -147 036 167 251 277 210
4 447 -2534 -100 018 092 099
5 474 302 -158 046 015
6 455 200 -150 -047
7 -3.890 227 -093
8 -285 -127
9

-1.52




11.2.4 Swaptions

« A swaption, or option on a swap, IS an interest rate
contract between two counterparties in which one
counterparty (the option buyer) has the right, but not the
obligation, to enter at a pre-specified time T into a given
Interest rate swap with maturity W@ > T and (strike)
swap rate r,

 The other counterparty (the option seller) has the

obligation to take the other side of the swap contract if

the option buyer exercises the option

- Two main types of plain vanilla swaptions are the
following:

= Arecelver swaption Is an option to enter into a swap and
receive the fixed rate ry

= A payer swaption Is an option to enter into a swap and pay
the fixed rate r




11.2.4 Swaptions (cont.)

« An example:
s How do we value a swaption?

- Consider a European payer swaption with two years to
maturity (1 = 4), to enter at 1 = 4 into a 3-year swap and pay the
fixed rate r, = 4.49%

. ;(I'helr(r)\aturity date of the swap is then five years from now, i.e.
1.Compute the tree of the underlying swap value whose swap
rate 1s equal to the swaption’s strike rate ry
2.Compute the swaption payoff at time 1 = 4:
max(V,;(10,ry), 0)
3.Use the risk neutral binomial tree to compute the price of
the swaption from its payoff



Table 11.9 A 2-Year Paver Swaption

2 3 4

e lad P2 .-n::.|'i-._ m

341

741 1033 1386
207 484 748
050 120 244
000 000

0.00




11.3 IMPLIED VOLATILITIES AND THE
BLACK, DERMAND AND TOY MODEL

- 11.3.1 Flat and Forward Volatility

- 11.3.2 Forward Volatility and the Black, Derman
and Toy Model



11.3 IMPLIED VOLATILITIES AND THE
BLACK, DERMAND AND TOY MODEL

- The empirical volatility of interest rates Is the level of interest
rate variation ¢ computed from a time series of past interest
rate changes

For instance, in the two models discussed, the empirical

volatility is:

Ho-Lee model : o =std.dev. of (r,.,—1Ty)

Simple BDT: o = std.dev. of (In(r,., ) — In(r,))
 Consider a given derivative security, such as a cap, with

maturity T and strike rate ry, and let cap®2®(T,r,) be the
current price level of the cap

The implied volatility of this cap is the level of interest rate
variation ¢ such that the chosen interest rate model yields a
price of the cap identical to the cap®2®(T,r,)



11.3 IMPLIED VOLATILITIES AND THE
BLACK, DERMAND AND TOY MODEL (cont.)

Table 11.10 Swap Rates and Cap Prices on November 1, 2004

Maturity Swap Rates Discount —— - Cap Prices
T c(0,T)(%) Z(0,T) Data Simple BDT Model ~ Ho Lee Model

0.25 2.1800 09.4580 — - —

0.50 23177 98.8510 0.0456 0.0400 0.0689
0.75 2.4420 085.1899 0.1059 0.0948 0.1512
1.00 2.5550 07.4834 0.1859 0.1520 0.2349
1.25 2.6586 096.7385 0.2887 0.2106 0.3366
1.50 2.7546 0959598 0.4157 0.3038 0.4457
1.75 2.8451 05.1503 0.5662 0.3984 0.5670
2.00 2.9320 0943109 0.7364 0.4982 0.7050
2.25 3.0167 034417 0.9201 0.6062 0.8485
2.50 3.0991 02.5456 1.1129 0.7229 1.0008
2.5 3.1754 01.6268 1.3126 0.8586 1.1579
3.00 3.2540 90.6899 1.5194 0.9961 1.3252
3.25 3.3254 89.7307 1.7352 1.1386 1.4911
3.50 3.3930 88.7778 1.9598 1.2838 1.6643
3.75 3.4577 87.8050 2.1916 1.4344 1.8415
4.00 3.5200 86.8212 24288 1.5889 2.0247
4.25 3.5805 85.8263 2.6691 1.7542 2.2129
4.50 3.6393 84.8218 29117 1.9208 2.4007
4.75 3.6062 g3.8102 3.1562 2.0054 2.5946
5.00 3.7510 82.7938 3.4029 2.2706 2.7889

Original Data Source: Bloomberg.



11.3.1 Flat and Forward Volatility

« The Ho-Lee model appears to overprice short term
caps, and underprice long term caps, while the
Simple BDT model in this case always underprices

 One possible problem with the model is that the
volatility o has been mis-measured
= The volatility of interest rates Is time varying, and thus

we may be using the wrong level of volatility

« Assingle value of ¢ that makes the observed cap price
consistent with the model does not exist



11.3.1 Flat and Forward Volatility
(cont)

Table 11.12 Cap Implied Volatilities: The Simple BDT and Ho-Lee Models

SIMPLE BDT HO-LEE

Implied Volatilities o for Caps with Maturity T (in Parenthesis)
0.188 02291 030277 0.28504 0.00458 0.00584 0.01006 0.010997
Maturity  Data (T=05 I'=1) IT'=3 T=5 T=05 T=1) T=3 (I'=5

050 |0.0456| [0.0456| 00518 0.0628 0.0602 0.0456 | 00534 00796 00854
0.75  0.1059 01061  0.1184 01398 01347 01047 01204 01727 0.1843

1.00 0.1674 02262 02166 0.1644 02723 02926
125 02887 02385 02715 03324 03178 02224 02601 03899 04187
150 04157 03374 03735 04542 04336 03105 03510 05128 05522
175 05662 04428 04958 05944 05710 04053 04544 06594 07094
200 07364 05583 06258 07492 07182 04988 05651 08076 08668

225 09201 0.6790 07648 09274 08884 05996 06811 09697 1.0353
250 11129 08154 09202 11118 1.0640 07077 08005 11441 12233
275 13126 09577 10819 13115 12559 08256 09297 13287 14213
3.00 11156 12543 14528 09508  1.0625 16245
325 17352 12751 14373 1.745% 16709 10740 12044 17071 18265
350 19598 14442 16291 19749 18895 12010 13457 19021  2.0375
375 21916 16160 18252 22170 21200 13288 14905 21047 22501
400 24288 17959 20283 24643 23560 14606 16387 23170 24777
425  2.6691 19791 22418 27226 26078 15976 17885 25288  2.7025
450 29117 21717 24639 29931 28646 17361 19432 27433 29337
475 31562 23696 26889 32734 3.1329 18781 20986 29592  3.1670

500 [3.4029| 25712 29181 35562 [34029 | 20193 22597 3.1818




11.3.1 Flat and Forward Volatility
(cont.)

« The implied flat volatility of an interest rate cap
with maturity T and strike rate ry Is the level of
a(ry,T) In the interest rate model that exactly prices
the cap



11.3.2 Forward Volatility and the
Black, Derman and Toy Model

- Different implied volatilities generate different trees

s This suggests that it is not possible to replicate, for instance,
the 1-year cap by using the 2-year cap

« The full BDT is an interest rate model that is able to fit
exactly all of the zero coupon bonds and all of the caps

 One difficulty with simply adding a time index i1 to ¢ In
the Simple BDT model is that the tree is no longer
recombining, given that:

Zyyg=1Zot ((90 + (91) X A+ (0] — 0-2) X (A)l/z
Lygu=12p T 6y + 0) X A= (0, —0,) X (A)*
ZZ,ud # ZZ,du Un|eSS 01 — P



11.3.2 Forward Volatility and the
Black, Derman and Toy Model (cont.)

The full BDT solves this by using a different procedure to construct the
tree:

Zijsg = Zjj— 2 X 0 X (A)* forj=0,1,...,i-1
The implication of this equation is that instead of searching for &, at any
step i, we search for z;,, o (the top element in the interest rate treeB
This tree is made to be recombining, so we can now do:

Ziis1 = Zjj— 2 X 0; X (A forj=0,1,...,i-1
The forward volatility o, is the level of volatility in step 1 in the Black,
Derman, and Toy model that matches the cap price with maturity i+1
It is possible to think of the flat volatility as a sort of weighted average of
forward volatility:

= |f the forward volatility of a cap with maturity i+1 is higher than the forward
volatility of a cap with maturity i, then the implied volatility of the former cap is
also (likely) higher than of the latter



11.3.2 Forward Volatility and the
Black, Derman and Toy Model (cont.)

Table 11.13 The Black. Demman and Tov model

t=10 1=1 i=2 1=3

Bl

ro = 2.17% e ud = T2 pu X € xagx v




11.3.2 Forward Volatility and the
Black, Derman and Toy Model (cont.)

Table 11.14 The Black, Derman and Toy Model on November 1. 2004

Time — 0 025 05 075 1 125 15 175 2 225 25

Period i — 0 1 2 3 4 5 & 7 8 9 10
el ft}f{} — 18.77 1866 2777 3019 29076 3075 3398 3177 3199 3028
node §

217 268 321 426 537 645 797 1058 1202 1463 1636
222 266 323 397 479 586 753 874 1062 1208
221 244 294 356 431 536 636 772 893

1.85 217 264 317 382 463 560 659

160 19 233 272 337 407 4587

146 171 194 245 295 360

126 138 179 215 2466

D98 130 1556 196

095 113 145

0.82 1.07

0.79

R= T = I = L S W e ™
e
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11.4 RISK NEUTRAL TREES FOR
FUTURES PRICES

« 11.4.1 Eurodollar Futures

e 11.4.2 T-Note and T-Bond Futures



11.4 RISK NEUTRAL TREES FOR
FUTURES PRICES

Because futures markets, such as the Eurodollar futures or the T-bond
futures are very liquid, traders extract as much information as possible
from the behavior of futures prices to build risk neutral trees

 Let Fi,j(k) denote the futures price of a contract maturing at time k at
time/node (i,j)

 Recall that futures are marked-to-market daily

« Assume that mark-to-market occurs at the same frequency of the time steps
on the tree

« Then, the profits per period are given by the change in the futures price
between one period to the next

- That is, If the interest rate moves up on the tree from ri,j to ri+1,j then the
profit from the futures is N X (Fi+1,j(k) — Fi,j(k)), where N is the contract
size

- Since, by construction, the interest rate tree is risk neutral, the risk neutral
expected profit from a position in futures is:

E'[Fi.i(k) — Fi(K)] =% X (Fispj(K) = Fip) + % X (Fiy (k) = Fij)



11.4 RISK NEUTRAL TREES FOR
FUTURES PRICES (cont.)

The key question is: If all market participants were risk neutral, what should the
expected risk neutral profit be?

Because it costs nothing to enter into a futures position, the answer is the expected
profit should be zero

If the risk neutral expected profit was positive, then risk neutral agents would go infinitely
long in the contract, pushing up the futures price

If the risk neutral expected profits from futures was negative, all risk neutral agents would
short the futures

The key implication of the risk neutral pricing methodology applied to futures is
then the following restriction: E” [F,+1(k) F.(k)] = 0, which leads to:

F T =%h X |+1 (k) th X FI+1J+1(k)
This equation allows us to move backward on the tree, exactly as we did for other

securities: given the futures prices at nodes at time |+1 we can compute the futures
price at node i

Finally, at maturity, the futures price must converge to the value of the security
underlying the futures contract (convergence), so:

_ Fij(K) =N XV, _ _ _
where V, ; Is the payoff of the futures contract with maturity k (underlying security)



11.4.1 Eurodollar Futures

« For Eurodollar futures the underlying final cash payment depends
on N X (3-month LIBOR) where N is the contract size

- The Eurodollar futures contract with maturity k in node (i,J) Is
quoted as F;;(k) = (100 — f;;(k)) where f;;(k) Is the futures rate, In
percentage

« The Eurodollar futures LIBOR rate at maturity (k) must converge
to: fy;(k) = N xr,(k,J), where r,(k,J) denotes a quarterly (n =
4)compound|ng rate (i.e. LIBOR)

 Recall that the BDT model, fitted to swaps and cap prices, generates
an interest rate tree in which rates are continuously compounded, so,
assumlng N =1, at maturity k we have:
(k) = ry(k,j) =4 x (en** 1)
° I!us methodology can also be reversed, so we start with futures
rates or prices (higher liquidity than swaps) In order to compute the
short rate process



11.4.1 Eurodollar Futures (cont.)

Table 11.15 Euwrcdollar Futures Trees

3-Month Futures Rates Tree 3-Month Eurodollar Futures Price

i 0 1 2 3 4 i 0 1 2 3 4
_J ] _J ]
0| 246 2.69 09754 9731
1 223 1 9777
6-Month Futures Rates Tree &-Ivonth Eurodollar Futures Price
J J
0269 295 322 0| 9731 9705 96.78
1 244 2467 1 9756 9733
2 221 2 97.79
9-Month Futures Rates Tree 9-Month Eurodollar Futures Price
J J
0| 290 330 376 428 "0 | 97.10 9670 9624 9572
1 250 285 324 1 97.50 9715 96.76
2 215 245 2 9785 9755
3 1.56 3 08.14
1-Year Futures Rates Tree 1-Year Eurodollar Futures Price
J J
"0 218 269 322 428 541 "0 | 9782 9731 9678 9572 9459
1 223 267 324 399 1 Q777 9733 9676 96.01
2 221 245 295 2 9779 9755 97.05
3 1.86 218 3 98.14 9782
4 1.61 4 98.39




11.4.2 T-Note and T-Bond
Futures

« The party who is taking a short position in these futures, and thus commits to
deliver the underlying security at maturity, is implicitly acquiring some options:
= Quality option:
+ There are several securities that are eligible for delivery (e.g. for the 10-year contract, these
are all the Treasury notes that have a maturity comprised between 6 % and 10 years)

- Across all the securities that are eligible for delivery, the short trader will choose the one that
Is least expensive, which is then called cheapest-to-deliver

o WI|d card option:

There is a whole month to deliver the note or bond; during this month the futures contract
trades until the seventh business day before the last business day

Every trading day in the delivery month, the short may deliver until 8 pm (Chicago time),
while the contract stops trading at 2 pm (Chicago time)

Essentially, the trader short the contract has about 15 sequential six-hours put options during
each day of the delivery month until the last day of futures trading
= End-of-month option:

- Trading stops seven days prior the last business day of the contract month, but delivery can
occur up to the last trading day

Before the invoice price of the futures has been fixed on the last trading day, but bond prices

keep trading, the short has a timing option as it can select any day during the last week to
deliver



11.4.2 T-Note and T-Bond
Futures (cont.)

« The existence of these options has an impact on the futures price itself
 For the quality option, the short trader will deliver the bond that is least expensive
= If no correction was made to the futures price, the cheapest bond or note would
correspond to the one with the lowest maturity and coupon
= To avoid liquidity issues and manipulations, it is desirable to standardize all of the

securities eligible for delivery
= The invoice price paid by the long side to the short side equals the futures price F,.at

maturity t” multiplied by a conversion factor C
+ This conversion factor is defined to make the deliverable bond comparable to a 6% coupon

bond or note
- How does the short trader determine the best bond to deliver on a futures contract

W|th price F;;(k)?

Let there be n notes that are eligible for delivery, where for each note h, h=1,...,n, let C"

denote its conversion factor and Ph its clean price
= For each note h we can compute the difference in price:

Basis of note h = P ; — F, ;(k) x C"

= The bond h with the smallest basis is the cheapest-to-deliver



11.4.2 T-Note and T-Bond
Futures (cont.)

Table 11.16 Conversion Factors for 10-Year Treasury Note Futures

Iesue  Matunty Cusip Izsuance 6% Comversion Factors
Coupon Diate Date HNumber (Bilhons) Mar Jun. Sep. Diec. Mar. Jun.
2008 2008 2008 2008 2009 2009
Ly @ 312 01508 0215/18 912828HF4 5230 08174 08210 05244 08281 08317 0.8354
2) 4 0271505 02/15/15 912828DM% 5230 08902 08937 — — — —
33 41/8 051605 051515 912828DV9 5220 08941 08971 09003 — — —_
4} 414 1171504 11715/14 912828DC1 5230 09069 — —_ —_ _ _
5. 414 081505 0815/15 912828EE6 3210 (0.8983 0.9012 095040 09089 — —_—
6.) 414 1171507 11/15/17 912823HHe 5210 08747 08771 08797 083821 08848 0.8873
73 4172 111505 11715/15 912828EMS 5210 09105 09128 09153 09177 09202 —_
£} 4172 021506 021516 912828EWe 5210 09080 09105 09128 05153 09177 0.5202
93 4172 051507 051517 912828GS53 5210 08968 08990 09013 09034 09058 0.9080
10) 458 111506 11/15/16 912828FY1  %£21.0 09095 09115 09136 09137 09179 0.9200
11} 458  0¥1507 0271517 912828GHT 210 09074 09095 095115 09136 09157 0.9179
12, 434 081507 081517 912828HA1  $21.0 09122 09140 09158 09177 09135 09215
13} 478 081506 0815/16 912828FQ8 $21.0 09275 09293 09310 09328 09346 0.9365
143 5158 05/15/06 05715/16 912828FF2 5210 09450 09483 059478 09491 09506 048519

Footnotes: "(@" indicates the most recently auctioned U.5. Treasury securty ehzible for delivery.

The information contamned in this publication 15 taken from sources believed to be reliable, but 15 not guaranteed by the

CME Group as to ifs accuracy or completeness, nor any trading result,

and 15 mtended for puwrposes of mformation and education only. The Rules and Regulations of the CME Group should be
consulted as the authorttative source on all current contract

spectfications and regulations. To obtain updated conversion factors, pleasae visit the Exchange’s website at www.ecmegroup.com.

Source: CBOT web site: hitp:/worw.chot.com/chotpub/cont deta1l 0,3206,1391+20356,00 hitm] accessed on June 11, 2008.



11.4.2 T-Note and T-Bond
Futures (cont.)

« An example:

= Consider fitting the Ho-Lee model to the term structure of interest rates on January 8,
2002; resulting in an interest tree extended to longer horizons to price longer-term notes
and bonds, see Table 11.17:

Panel A contains the zero coupon bond data on January 8, 2002 up to maturity T =8
Panel B contains the fitted Ho-Lee model
= Consider a 10-year Treasury note futures, with maturity of one year (December, 2003)

+ According to the terms of the contract only Treasury notes with maturities between 6 1/2 and
10 years can be delivered
= The futures price will be adjusted by the appropriate conversion factor to make each
possible deliverable bond comparable to a 6% bond

= To illustrate the tree methodology to T-note futures, it is convenient to first consider the
case in which the security underlying the future is exactly a 6%, 7-year Treasury note

= Given the risk neutral interest rate tree in Panel B, we can compute the risk neutral tree for
the deliverable T-note, which is contained in Panel C of Table 11.17

= The T-note priced on this tree is a 8-year, 6% note, rather than 7-year note, the reason
being that the T-note must have 7 years to maturity at the maturity of the futures contract,
in one year from the present



11.4.2 T-Note and T-Bond
Futures (cont.)

. An example (cont’d):

We know that at maturity the futures price must converge to the value of the underlying
security to avoid an arbitrage

= In other words, denoting by k = 2 the node corresponding to the maturity of the futures
contract, we must have F, ;(k) = P ;; where P, ; is the price of the bond at time k and node j

= Table 11.18 shows the risk neutral futures price tree

= Consider now the case in which in addition to the 6% note described earlier, two
additional notes are available, one with a 3% coupon and one with a 9% coupon

= Assume all of these notes have the same maturity

= Using the same interest rate tree as in Panel B of Table 11.17 we can obtain the trees of
these T-notes as well

= They are contained in Panel A and Panel B of Table 11.19
= The next step is to compute the conversion factor for each of these notes

Conversion factor 3% note = C! = 0.830558903
Conversion factor 6% note = C2 = 1.000000000
Conversion factor 9% note = C3 = 1.169441097



11.4.2 T-Note and T-Bond
Futures (cont.)

¢ An example (cont’d):

o

Consider now the futures maturity date k; for each node j, we can compute the basis for
each bond

We know that at each of these nodes (k,j), the trader who is short the futures will choose to
deliver the bond with the smallest basis; so we compute:

The futures price at time k in node j, F, ;(k), will move to prevent arbitrage, so that for
every j the following must occur

Node(k, j): min (R, - F ; (k)xC*)

minimization is taken across the bonds h = 1,...,n that are eligible for delivery

In other words, the futures price moves to make the bond price with the smallest basis in
fact equal to the futures price (corrected by the conversion factor)

That is, F,;(k) is given by:
Node(k, j):min (R, - F, ;(k)xC")=0

Once F, ; has been computed, the rest of the risk neutral futures tree follows
h

p"
Fy.;(k)=min J

Ch



11.4.2 T-Note and T-Bond
Futures (cont.)

* An

o

example (cont’d):
Table 11.20 illustrates the calculations.

The last three columns report the converted bond price, namely, P", ; / C" for each bond h
(3%, 6% and 9%) and for each interest rate node j =0, 1, 2

The futures price at each node j will equal the minimum across each row

That is, the futures price in node (k,j) = (2,0) is given by F, (2) = 87.86 which
corresponds to the converted note price of the 3% note

This is the minimum across the three bonds for that particular interest rate, and thus the
cheapest-to-deliver is the 3% T-note

Similarly, F,,(2) = 117.28 corresponds to the converted price of the 9% Treasury note,
which in this case is the minimum across all three available notes

The cheapest-to-deliver is the 9% T-note

This finding implies that depending on whether interest rates increase or decrease, the T-
note that is the cheapest-to-deliver alternates between T-notes with different coupons

The futures prices in the tree in Table 11.20 are always lower than the corresponding
futures prices for the case only the 6% Treasury note was available

This lower futures price reflects the option that is implicit in the futures contract

The other two options (wild card option and end-of-the-month option) would also
decrease the futures price.



Table 11.17 The 6% Bond Tree
Panel A Tero Coupon Bond Data
Time T a 03 1 1.5 1 a3 3 i3 4 43 3 5 & 6.5 7 15 ]
Perind i a 1 | 3 4 5 ] 7 g o 10 11 12 13 14 15 16
Duta 001338 978023 Q61462 0410011 917134 892258 B4B142 B45015 B21B48 TOTTIE 774339 73200 71941 TOBSS GBATT 66784
Pamal B. The Fitted Ho-Lee Interest Fate Tres
8, (=100) L3675 21824 14374 17324 07873 00423 00628 04323 00271 01202 05194 15300 07335 10813 -1.0233 07313 -L.7140
niade j
1] 1.74 375 .06 B.00 1o 1171 1285 1415 1550 1727 1856 1851 2151 2234 2413 2484 2643
1 1.30 3.6l 5.56 7455 824 1051 1170 1304 1483 1801 1707 1904 1992 21488 2239 139%
b 117 in 530 6.82 206 0135 e 12383 1365 1463 1661 1747 1024 1093 21134
k] 0.4 275 437 361 6.81 335 b3 1122 1218 1417 1302 1679 1730 1909
4 031 192 317 436 3.80 744 im 873 172 12358 1434 1506 1684
] 052 72 131 333 304 5.32 724 237 1013 1180 1241 1420
L 173 -0E3 091 150 ER:H] 434 5.83 T.68 045 1016 1173
7 -108 -1.54 0.13 143 139 438 5.4 700 771 230
] 30 -130 -10x2 005 184 270 4358 AT 685
q 475 -145 -150 051 033 111 181 441
10 =541 485 284 -210 034 037 196
11 -3 540 £33 178 207 048
12 -785 680 513 431 193
13 A44 -THE 697 53R
14 -1z 941 -7R2
15 -1185 -10.27
16 -12.72
Panel C. The §%, B-Year Treazury Mate Tres
7
[} 106.77 9683 8393 B223 7RIl T445  T2IT 044 6040 6937 TO1T T1BE T448  TEZ1  BITO 09T 10
1 11257 10240 9450 8831 8345 E04 T4 TRTT 7440 705 TAM0 TEO2  El3s B5E3 9100 1O
2 11831 10804 10001 9385 B909 8530 245 BOS2  B02%  E058  Bl74 B430 BTO2 0312 100
k] 12376 11345 10544 9013 o401 90321 8746 8590 8333  BS44  E735 o006 9437 1M
4 13880 11841 11041 10380 ©B32 9455 9193 9037 BAT7F 4031 9124 053 1M
5 13357 12308 11456 10765 10228 9841 9573 9403 8370 94351 947 100
L] 13735 12632 11747 110466 10535 10141 9833 9719 O§81 9780 100
7 13082 12840 11975 11284 10744 10325 10072 9818 2000 100
] 14080 12065 12085 11385 10822 10437 101480 10032 100
q 14040 12048 1204637 11342 10816 10408 10156 100
10 13874 12786 11888 11200 10662 10221 100
11 13553 12460 11417 1@22 1M07 100
12 13061 12030 11120 10535 100
13 12478 11462 10645 100
14 11742 10786 100
15 10a2e 100
16 10




Table 11.18 Futures Price Tree if onlv a 7-vear, 6% Note 1s Available for Delivery

Period ¢ 0 1 2
Node ;
0 10208 0566 8803
1 110,30 10240
2 11821




Table 11.19 3% and 6% Treasury Note Price Trees

0 1 1

Pansl A The 3%, E-Year Treasury Mate Tres

Pemod ¢ k1 4 5 4] g o 140 11 12 13 14 15 16
Mode 5
] [ B6.77 TR0l 7187 &84T 6515 6193 4157 G003 S00E 6LE2 63SD 46627 6085 7491 BIIE B9&5 10D
1 0304 8504 TERY 7438 TIM1 G6BER 467456 G5Bl 6702 6820 VOM  J3XG TIAG  EIAT  Q07F 10D
! 9035 ©1.21 B501 E044 PTIO P42 7323 OTIAR O OTING 74546 TAB4  BOSY  B3S2  ODLET 100
3 10347 9725 910§ 84635 H2E81 8020 TEEBI TE4E 7010 B0 F348 ET41 9300 Q00
4 11139 10516 2578 9182 8806 B35 8420 8393 B457 2654 8054 9414 100
5 11696 10B53 101.84 9642 G270 Q035 S004 BE6T BOTI QLTS 0530 100
[ 12077 11301 RM0G03 10071 9467 9447 0301 €303 €402 Q4647 100
7 1545 11630 10631 10407 100235 9757 @45 Q633 Q745 100
B 12780 11868 11171 10630 10235 10000 O OCRS& 100
a 12887 11983 11291 10737 10369 10012 10008 100
10 12876 119083 11284 10751 10381 10131 100
11 127019 11217 11147 106106 10236 100
12 12388 11558 10877 10382 100
13 11984 11144 10510 1040
14 11418 10530 100
15 107,70 100
16 100
Tanel B The 0%, 5-tear ITeasury Mote 1iee
Hiode 5
] [ 135,77 11466 10488 9719 9107 84538 8377 8000 7ROl T6BE AT TR0 TONl B213 B0 9320 104
1 13210 10e77 11003 10034 o518 9141 B762 B472 BXIT7E BlE0 81492 8270 8505 BR30 0343 100
i 13706 12488 11502 10727 10107 @504 0207 2916 8740 B6A60 85464 BEOE 00352 Q453 100
3 12205 12064 11983 11001 Q0541 M00.14 Q400 9331 0156 Q0480 ©0123 @172 9374 100
4 14630 13405 12404 11578 10898 10361 90456 9483 Q404 9448 40 0503 10
5 15018 13765 12727 11868 11176 104646 1024 DR300 0785 @726 0812 100
L] 15282 14003 02032 120461 11376 I0B35 NO405 10135 9062 9032 100
7 13415 14100 13020 12160 11463 108935 10498 10203 100.35 100
B 13381 140463 13000 12131 11408 I0E74 10450 10178 100
a 15003 13003 12838 11947 Q1264 100048 10304 10D
10 14871 13389 12511 10668 10053 10430 100
11 14386 13104 Q2087 11220 Q0530 100
13 13735 125321 11501 10689 10O
13 12473 11781 10820 100
14 12067 10934 100
15 11088 100
16 104




Table 11.20 Treasury Note Futures when 3%, 6% and 8% Notes Are Available

Period 0 1 2 Converted Note Prices P |, /C*
Node 5 iveMote 6% Note 9% Note
0 10248 9512 B7.86 87.86 88.93 89 68
1 10983 10238 10238 102.40 102.42
2 11728 119.51 118.21 117.28




11.5 IMPLIED TREES: FINAL
R PRSI0 with this model, now?

- By construction, the model exactly prices zeros and caps,
S0 we cannot use this model to price those

1. The model is useful for computing hedge ratios:

where ¢, , and c are the values otthe securities sold in
the two interest @@J@#Hﬁew and V, 4 are the
values of the interest rate cho¥em t0" ﬁedge the exposure
2. Once fitted to zeros and caps, the model can be used to
obtain the price of other interest rate securities, such as

structured notes, swaptions, American swaptions, and so
on



