
Chapter 11: RISK NEUTRAL 

TREES AND DERIVATIVE 

PRICING



11.1  RISK NEUTRAL TREES

• 11.1.1 The Ho-Lee Model

• 11.1.2 The Simple Black, Derman and Toy (BDT) 

Model

• 11.1.3 Comparison of the Two Models

• 11.1.4 Risk Neutral Trees and Interest Rates



11.1.1  THE HO-LEE MODEL

• The Ho-Lee model is one of the simplest models that 
exactly fits the term structure of interest rates

• The model is specified as follows: let ri,j be the 
continuously compounded interest rate in node j between 
steps i and i + 1:

ri+1,j =   ri,j + θi × Δ + σ × (Δ)½

ri+1,j+1 =   ri,j + θi × Δ – σ × (Δ)½

with R.N. probability p* = ½  

• Recall that on multistep trees we denote:

• Pi,j(k) = Bond price at time i in node j with maturity at 
(step) k



11.1.1  THE HO-LEE MODEL

• An example:
▫ Consider the term structure of interest rates on January 8, 2002: the zero coupon 

bond expiring on date k = 1 is P0(1) = 99.1338, implying r0 = 1.74% (the root of 
the tree)

▫ In the data, the zero coupon bond expiring on date k = 2 is P0(2) = 97.8925 
▫ We now choose θ0 so that the binomial tree exactly gives P0(2) as price

r1,0 = 1.74% + θ0× Δ + σ(Δ)½  with RN probability p* = ½  
r1,1 = 1.74% + θ0× Δ – σ(Δ)½  with RN probability p* = ½  

at the time the data gave σ = 0.0173
▫ We can now choose θ0 so that the following equation is satisfied

97.8925 = e-r0×Δ× (0.5 × e-r1,0×Δ + 0.5 × e-r1,1×Δ) × 100
Price of zero in the data = Risk neutral price from binomial tree
▫ Given r0 = 1.74% and σ = 0.0173, r1,0 and r1,1 depend only on the level of θ0

▫ Thus, we have one equation with one unknown 
▫ Using a search algorithm, we find θ0 = 1.5674% 
▫ Given this value for θ0, the two interest rates are r1,0 = 3.75% and r1,1 = 1.30%.



11.1.1  THE HO-LEE MODEL

• An example (cont’d):
▫ In the data, the zero coupon expiring on date k = 3 has price P0(3) = 96.1462
▫ Keeping θ0 as determined in the previous step, we now look for θ1 such that the 

tree exactly yields a price P0(3) = 96.1462 
▫ Rather than using an equation to find θ1, we use the binomial tree itself; 

specifically, let us set up a three-step binomial tree for a given θ1, e.g. θ1 = 0 
▫ This tree will provide a bond value different from the one that we need 
▫ However, we can then vary θ1 until we reach the correct value for the bond 
▫ Table 11.1 shows the result: 

 On the left-hand side there is an interest rate tree and bond price for the case in which 
θ1 = 0 

 On the right-hand side of the table, instead, there is the interest rate tree and the bond 
price for the θ1 that exactly matches the bond price in the data for maturity k = 3 

▫ As can be seen comparing the two trees, the one on the right-hand side has 
nodes r2,0, r2,1 and r2,2 that are higher than the corresponding nodes on the left-
hand side 

▫ θ1 had to be chosen greater than 0 to match the term structure of interest rates





11.1.1  THE HO-LEE MODEL 

(cont.)



11.1.2 The Simple Black, Derman 

and Toy (BDT) Model

• The main drawback of the Ho-Lee model is that it 

allows negative interest rates

• The BDT solves this by defining:

zi,j = ln(ri,j)

• Then for zi,j we have the process:

zi+1,j = zi,j + θi ×Δ + σ× (Δ)½

zi+1,j+1 = zi,j + θi ×Δ – σ × (Δ)½

with R.N. probability p* = 1/2 

• While zi,j can be negative, ri,j is always positive



11.1.2 The Simple Black, Derman 

and Toy (BDT) Model
• An example:

▫ The strategy to fit the term structure of interest rates is the same as for 
that of the Ho-Lee model 
 First look for θ0 that yields exactly the price of a bond maturing on k = 2 
 Then, we move to find θ1 that fits exactly the price of the bond maturing 

on k = 3 
 And so on 

▫ Table 11.3 shows the risk neutral tree
▫ The important detail to notice is the level of σ that we need to choose for 

the model
▫ Note that differently from the Ho-Lee model, now σ is the volatility of 

log-interest rates zi = log(ri) 
▫ As such, it must be estimated from a log interest rate series
▫ Taking log differences in monthly interest rates from 1961/12 to 

2001/12, we obtain an (annualized) level of volatility equal to σ = 
21.42%.



11.1.2 The Simple Black, Derman 

and Toy (BDT) Model (cont.)



11.1.3 Comparison of the Two 

Models
• By construction, the two models are equally able to fit the 

term structure of interest rates

• However, the two models generate important differences in the 
implied risk neutral probability distribution of interest rates in 
the future

▫ The Ho-Lee model gives non-zero probability to negative interest 
rates, and small probability to high interest rates

▫ The Simple BDT model gives essentially zero probability to 
interest rates below 1%, but assigns higher probability to high 
interest rates

• These differences are not important for bond prices, as both 
models exactly match the term structure of interest rates

• However, they will generate important differences for other 
securities that have asymmetric payoff structures, such as 
options



11.1.3 Comparison of the Two 

Models (cont.)



11.1.3 Comparison of the Two 

Models (cont.)
• Consider a structured bond with payoff:

max(11 × 100 × rT , 94)
• Under each model specified we get:
• Price under Ho-Lee: $80.0645
• Price under BDT: $78.9135
• The lower price in the Simple Black, Derman and Toy model 

highlights the differences of the model: 
▫ Although the positive skewness of the risk neutral distribution in 

the BDT model implies a higher risk neutral expected payoff for 
the Simple BDT model, the higher interest rates implied by the 
model also imply a higher discount applied to the payoff. 

▫ The higher discount effect more than compensates for the higher 
expected return



11.1.4 Risk Neutral Trees and 

Future Interest Rates
• There is often a temptation to interpret too much from the 

implied risk neutral interest rate trees
• Remember that a risk neutral interest rate tree’s only purpose 

is to compute the price of interest rate securities through no 
arbitrage

• This has little to do with the real world expectation of future 
interest rates

• It should be noted that:
▫ The BDT model does not allow enough (risk neutral) probability 

mass to low interest rates, which makes this model underperform 
in low interest rate environments

▫ In contrast, the Ho-Lee model allows perhaps too much (risk 
neutral) probability to low interest rates, and in fact even to 
negative interest rates

• Derivative security prices are very sensitive to this 
distributional differences



11.2  USING RISK NEUTRAL TREES

• 11.2.1 Intermediate Cash Flows

• 11.2.2 Caps and Floors

• 11.2.3 Swaps

• 11.2.4 Swaptions



11.2.1 Intermediate Cash Flows

• Given a tree, we can insert any type of known cash 

flow:

Pi,j = e-ri,j×Δ× (½  Pi+1,j + ½  Pi+1,j+1 + CF(i+1))

where CF(i+1) is the cash flow paid at time i+1



11.2.1 Intermediate Cash Flows

• An example:
▫ Consider the price of a 1.5-year, 3% coupon bond on January 8, 2002 
▫ use the Simple Black, Derman, and Toy interest rate model 
▫ We calculate the price of the coupon bond using the tree in Table 11.4 
▫ In each step, we add the cash flow CF(i + 1) = 1.5 (= 3%× 100/2) to the 

price in the following period, and take the present value
▫ So, for example, the value of the bond if the interest rate goes up twice 

(to r2,uu = 4.77%) is equal to the present value of the bond value in the 
next period, equal to $100, plus the coupon to be received next period, 
equal to $1.5 

▫ The present value is then P2,uu = $99.1094
▫ The prices on the tree are ex-coupon prices, that is, the price of the bond 

right after the coupon has been paid



11.2.2 Caps and Floors

• A plain vanilla cap with maturity T, strike rate rK, and notional 
N is a security that pays a stream of cash flows at given dates 
T1, T2, …, Tm = T, according to the formula:

CF(Ti) = Δ × N × max(rn(Ti – Δ) – rK, 0)
where n is the number of payments per year and Δ = 1/n = Ti –
Ti-1 is the amount of time between payments and rn(T) is a 
reference floating rate with compounding frequency n (e.g. the 
6-month T-bill rate or LIBOR)

• A plain vanilla floor pays cash flows according to:
CF(Ti) = Δ × N × max(rK – rn(Ti – Δ), 0)

• It is important to note that cash flows occurring at Ti are 
determined at the previous node Ti – Δ

• Caps and floors are easily priced through trees



11.2.2 Caps and Floors (cont.)

• Consider a cap where cash flow is determined by:

CF(Ti) = Δ × N × max(rn(i,j) – rK, 0)

where:

rn(i,j) = n × (eri,j× Δ – 1)

is corresponding interest rate with compounding 

frequency n

• Given these cash flows, we use the backward recursive 

formula to obtain the value of the cap along the tree

• Vi,j = Value at time/node (i,j) of cash flows at times k > i

• Vi,j = e-ri,j×Δ× (½  Vi+1,j + ½  Vi+1,j+1 + CFi,j(i +1))



11.2.2 Caps and Floors (cont.)

• An example:
• Consider the value on January 8, 2002, of a 1.5-years cap, with semi-

annual payment (n = 2, Δ = 0.5), and with strike rate rK = 3% (notional N = 
100); we apply the Simple Black, Derman, and Toy risk neutral tree

• We proceed in two steps:
▫ Cash Flow Tree: The first step to obtain the price of the cap is to build a cash 

flow tree, that is, a tree that defines the cash flow that is determined (not paid) in 
a given node (i,j) (see tree in Table 11.5)
The cash flow tree in this table also shows not only the time of the formation of 
the cash flows, but also when they would be paid (i.e., one period later) 
The corresponding semi-annually compounded interest rate is: 

r2(2,uu) = 2 × (e4.77% / 2 − 1) = 4.82% 
Thus, the cash flow determined at time/node (2,uu) is: 

C2,uu(3) = 100 / 2 × max(4.82% − 2.5%, 0) = 1.162 
Note, however, this cash flow is not paid at time (2,uu) but at time i = 3, as the 
tree shows

▫ Cap Value Tree: Given the cash flow tree, we can compute the value of the cap 
by using the backward formula 
The resulting tree is in Table 11.6; we obtain a value of the cap at time i = 0: V0
= $0.647









11.2.3 Swaps

• Valuation of swaps can be obtained from the discount 

factor, yet understanding the dynamics of the value of 

the interest rate swap on an interest rate tree is 

instrumental to obtaining the price of other interest 

rate derivatives

• The cash flow for a plain vanilla swap is:

CF(Ti) = Δ × N× (rn(Ti – Δ) – c)

where c is the swap rate



11.2.3 Swaps (cont.)

• The methodology to value a swap is identical to the one 
used to value a cap
▫ Compute the cash flow tree using

CFi,j(i+1) = Δ × N× (rn(i,j) – c)
where recall

rn(i,j) = n × (eri,j× Δ – 1)
▫ Compute the value of the swap on the tree as the present 

value of the risk neutral expectation of future cash flows by 
moving backward on the tree:

Vi,j(k,c)= e-ri,j×Δ× (½  Vi+1,j(k,c) + ½  Vi+1,j+1(k,c)+ CFi,j(i +1))

where: Vi,j(k,c) = Value of the swap in (i,j) with maturity (k) 
and swap rate c



11.2.3 Swaps (cont.)

• An example:
▫ Consider a 5-year fixed-for-floating swap on January 8, 2002, defined 

on the 6-month T-bill rate and with semi-annual payments; the swap rate 
is:

▫ Recall that this swap rate is the one that makes the value of the interest 
rate swap equal to zero at inception 

▫ Given the Simple Black, Derman and Toy, we obtain the cash flow tree 
and swap value tree in Panels A and B of Table 11.8, respectively 

▫ The comforting fact is that the root of the swap value tree, in Panel B, 
indeed gives V0 = 0, as it should be from the definition of c

▫ This is not surprising, as the tree used to value this swap was calibrated 
to zero coupon bonds 

▫ However, we have confirmation that the tree methodology works, as it 
correctly values the interest rate swap
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11.2.4 Swaptions

• A swaption, or option on a swap, is an interest rate 
contract between two counterparties in which one 
counterparty (the option buyer) has the right, but not the 
obligation, to enter at a pre-specified time T into a given 
interest rate swap with maturity Tswap > T and (strike) 
swap rate rK

• The other counterparty (the option seller) has the 
obligation to take the other side of the swap contract if 
the option buyer exercises the option

• Two main types of plain vanilla swaptions are the 
following:
▫ A receiver swaption is an option to enter into a swap and 

receive the fixed rate rK

▫ A payer swaption is an option to enter into a swap and pay 
the fixed rate rK



11.2.4 Swaptions (cont.)

• An example:
▫ How do we value a swaption?

 Consider a European payer swaption with two years to 
maturity (i = 4), to enter at i = 4 into a 3-year swap and pay the 
fixed rate rK = 4.49%

 The maturity date of the swap is then five years from now, i.e. 
k = 10

1.Compute the tree of the underlying swap value whose swap 
rate is equal to the swaption’s strike rate rK

2.Compute the swaption payoff at time i = 4: 
max(V4,j(10,rK), 0)

3.Use the risk neutral binomial tree to compute the price of 
the swaption from its payoff





11.3  IMPLIED VOLATILITIES AND THE 

BLACK, DERMAND AND TOY MODEL

• 11.3.1 Flat and Forward Volatility

• 11.3.2 Forward Volatility and the Black, Derman 

and Toy Model



11.3  IMPLIED VOLATILITIES AND THE 

BLACK, DERMAND AND TOY MODEL

• The empirical volatility of interest rates is the level of interest 
rate variation σ computed from a time series of past interest 
rate changes
For instance, in the two models discussed, the empirical 
volatility is:
Ho-Lee model : σ = std.dev. of (rt + Δ – rt)
Simple BDT: σ = std.dev. of (ln(rt + Δ) – ln(rt ))

• Consider a given derivative security, such as a cap, with 
maturity T and strike rate rK, and let capData(T,rK) be the 
current price level of the cap
The implied volatility of this cap is the level of interest rate 
variation σ such that the chosen interest rate model yields a 
price of the cap identical to the capData(T,rK)



11.3  IMPLIED VOLATILITIES AND THE 

BLACK, DERMAND AND TOY MODEL (cont.)



11.3.1 Flat and Forward Volatility

• The Ho-Lee model appears to overprice short term 

caps, and underprice long term caps, while the 

Simple BDT model in this case always underprices

• One possible problem with the model is that the 

volatility σ has been mis-measured

▫ The volatility of interest rates is time varying, and thus 

we may be using the wrong level of volatility

• A single value of σ that makes the observed cap price 

consistent with the model does not exist



11.3.1 Flat and Forward Volatility 

(cont)



11.3.1 Flat and Forward Volatility 

(cont.)

• The implied flat volatility of an interest rate cap 

with maturity T and strike rate rK is the level of 

σ(rK,T) in the interest rate model that exactly prices 

the cap



11.3.2 Forward Volatility and the 

Black, Derman and Toy Model
• Different implied volatilities generate different trees
▫ This suggests that it is not possible to replicate, for instance, 

the 1-year cap by using the 2-year cap

• The full BDT is an interest rate model that is able to fit 
exactly all of the zero coupon bonds and all of the caps

• One difficulty with simply adding a time index i to σ in 
the Simple BDT model is that the tree is no longer 
recombining, given that:

z2,ud = z0 + (θ0 + θ1) × Δ + (σ1 – σ2) × (Δ)½

z2,du = z0 + (θ0 + θ1) × Δ – (σ1 – σ2) × (Δ)½

z2,ud ≠ z2,du unless σ1 = σ2



11.3.2 Forward Volatility and the 

Black, Derman and Toy Model (cont.)
• The full BDT solves this by using a different procedure to construct the 

tree:
zi,j+1 = zi,j – 2 × σ × (Δ)½ for j = 0,1,…,i-1

• The implication of this equation is that instead of searching for θi at any 
step i, we search for zi+1,0 (the top element in the interest rate tree)

• This tree is made to be recombining, so we can now do:
zi,j+1 = zi,j – 2 × σi× (Δ)½ for j = 0,1,…,i-1

• The forward volatility σi is the level of volatility in step i in the Black, 
Derman, and Toy model that matches the cap price with maturity i+1

• It is possible to think of the flat volatility as a sort of weighted average of 
forward volatility: 
▫ If the forward volatility of a cap with maturity i+1 is higher than the forward 

volatility of a cap with maturity i, then the implied volatility of the former cap is 
also (likely) higher than of the latter



11.3.2 Forward Volatility and the 

Black, Derman and Toy Model (cont.)



11.3.2 Forward Volatility and the 

Black, Derman and Toy Model (cont.)



11.4 RISK NEUTRAL TREES FOR 

FUTURES PRICES

• 11.4.1 Eurodollar Futures

• 11.4.2 T-Note and T-Bond Futures



11.4 RISK NEUTRAL TREES FOR 

FUTURES PRICES
• Because futures markets, such as the Eurodollar futures or the T-bond 

futures, are very liquid, traders extract as much information as possible 
from the behavior of futures prices to build risk neutral trees

• Let Fi,j(k) denote the futures price of a contract maturing at time k at 
time/node (i,j)

• Recall that futures are marked-to-market daily
• Assume that mark-to-market occurs at the same frequency of the time steps 

on the tree
• Then, the profits per period are given by the change in the futures price 

between one period to the next
• That is, if the interest rate moves up on the tree from ri,j to ri+1,j then the 

profit from the futures is N ×(Fi+1,j(k) − Fi,j(k)), where N is the contract 
size

• Since, by construction, the interest rate tree is risk neutral, the risk neutral 
expected profit from a position in futures is:

E*[Fi+1(k) – Fi(k)] = ½  × (Fi+1,j(k) – Fi,j) + ½  × (Fi+1,j+1(k) – Fi,j)



11.4 RISK NEUTRAL TREES FOR 

FUTURES PRICES (cont.)
• The key question is: If all market participants were risk neutral, what should the 

expected risk neutral profit be?
• Because it costs nothing to enter into a futures position, the answer is the expected 

profit should be zero
▫ If the risk neutral expected profit was positive, then risk neutral agents would go infinitely 

long in the contract, pushing up the futures price

▫ If the risk neutral expected profits from futures was negative, all risk neutral agents would 
short the futures

• The key implication of the risk neutral pricing methodology applied to futures is 
then the following restriction: E*[Fi+1(k) – Fi(k)] = 0, which leads to: 

Fi,j = ½  × Fi+1,j(k)  + ½  × Fi+1,j+1(k)
• This equation allows us to move backward on the tree, exactly as we did for other 

securities: given the futures prices at nodes at time i+1, we can compute the futures 
price at node i

• Finally, at maturity, the futures price must converge to the value of the security 
underlying the futures contract (convergence), so: 

Fk,j(k) = N × Vk,j, 
• where Vk,j is the payoff of the futures contract with maturity k (underlying security)



11.4.1 Eurodollar Futures

• For Eurodollar futures the underlying final cash payment depends 
on N×(3-month LIBOR) where N is the contract size

• The Eurodollar futures contract with maturity k in node (i,j) is 
quoted as Fi,j(k) = (100 − fi,j(k)) where fi,j(k) is the futures rate, in 
percentage

• The Eurodollar futures LIBOR rate at maturity (k) must converge 
to: fk,j(k) = N× r4(k,j), where r4(k,j) denotes a quarterly (n = 
4)compounding rate (i.e. LIBOR)

• Recall that the BDT model, fitted to swaps and cap prices, generates 
an interest rate tree in which rates are continuously compounded, so, 
assuming N = 1, at maturity k we have:
fk,j(k) = r4(k,j) = 4 × (erk,j×0.25 – 1)

• This methodology can also be reversed, so we start with futures 
rates or prices (higher liquidity than swaps) in order to compute the 
short rate process



11.4.1 Eurodollar Futures (cont.)



11.4.2 T-Note and T-Bond 

Futures
• The party who is taking a short position in these futures, and thus commits to 

deliver the underlying security at maturity, is implicitly acquiring some options:
▫ Quality option: 

 There are several securities that are eligible for delivery (e.g. for the 10-year contract, these 
are all the Treasury notes that have a maturity comprised between 6 ½  and 10 years)

 Across all the securities that are eligible for delivery, the short trader will choose the one that 
is least expensive, which is then called cheapest-to-deliver

▫ Wild card option:
 There is a whole month to deliver the note or bond; during this month the futures contract 

trades until the seventh business day before the last business day

 Every trading day in the delivery month, the short may deliver until 8 pm (Chicago time), 
while the contract stops trading at 2 pm (Chicago time)

 Essentially, the trader short the contract has about 15 sequential six-hours put options during 
each day of the delivery month until the last day of futures trading

▫ End-of-month option:
 Trading stops seven days prior the last business day of the contract month, but delivery can 

occur up to the last trading day

 Before the invoice price of the futures has been fixed on the last trading day, but bond prices 
keep trading, the short has a timing option as it can select any day during the last week to 
deliver



11.4.2 T-Note and T-Bond 

Futures (cont.)
• The existence of these options has an impact on the futures price itself
• For the quality option, the short trader will deliver the bond that is least expensive

▫ If no correction was made to the futures price, the cheapest bond or note would 
correspond to the one with the lowest maturity and coupon

▫ To avoid liquidity issues and manipulations, it is desirable to standardize all of the 
securities eligible for delivery

▫ The invoice price paid by the long side to the short side equals the futures price Ft* at 
maturity t* multiplied by a conversion factor C
 This conversion factor is defined to make the deliverable bond comparable to a 6% coupon 

bond or note

• How does the short trader determine the best bond to deliver on a futures contract 
with price Fi,j(k)?
▫ Let there be n notes that are eligible for delivery, where for each note h, h = 1,…,n, let Ch

denote its conversion factor and Ph
i,j its clean price

▫ For each note h we can compute the difference in price:

Basis of note h = Ph
k,j – Fk,j(k) × Ch

▫ The bond h with the smallest basis is the cheapest-to-deliver



11.4.2 T-Note and T-Bond 

Futures (cont.)



11.4.2 T-Note and T-Bond 

Futures (cont.)
• An example:

▫ Consider fitting the Ho-Lee model to the term structure of interest rates on January 8, 
2002; resulting in an interest tree extended to longer horizons to price longer-term notes 
and bonds, see Table 11.17:
 Panel A contains the zero coupon bond data on January 8, 2002 up to maturity T = 8 

 Panel B contains the fitted Ho-Lee model

▫ Consider a 10-year Treasury note futures, with maturity of one year (December, 2003) 
 According to the terms of the contract only Treasury notes with maturities between 6 1/2 and 

10 years can be delivered 

▫ The futures price will be adjusted by the appropriate conversion factor to make each 
possible deliverable bond comparable to a 6% bond

▫ To illustrate the tree methodology to T-note futures, it is convenient to first consider the 
case in which the security underlying the future is exactly a 6%, 7-year Treasury note

▫ Given the risk neutral interest rate tree in Panel B, we can compute the risk neutral tree for 
the deliverable T-note, which is contained in Panel C of Table 11.17

▫ The T-note priced on this tree is a 8-year, 6% note, rather than 7-year note, the reason 
being that the T-note must have 7 years to maturity at the maturity of the futures contract, 
in one year from the present



11.4.2 T-Note and T-Bond 

Futures (cont.)
• An example (cont’d):

▫ We know that at maturity the futures price must converge to the value of the underlying 
security to avoid an arbitrage 

▫ In other words, denoting by k = 2 the node corresponding to the maturity of the futures 
contract, we must have Fk,j(k) = Pk,j; where Pk,j is the price of the bond at time k and node j

▫ Table 11.18 shows the risk neutral futures price tree
▫ Consider now the case in which in addition to the 6% note described earlier, two 

additional notes are available, one with a 3% coupon and one with a 9% coupon

▫ Assume all of these notes have the same maturity 
▫ Using the same interest rate tree as in Panel B of Table 11.17 we can obtain the trees of 

these T-notes as well 

▫ They are contained in Panel A and Panel B of Table 11.19 
▫ The next step is to compute the conversion factor for each of these notes

Conversion factor 3% note = C1 = 0.830558903
Conversion factor 6% note = C2 = 1.000000000
Conversion factor 9% note = C3 = 1.169441097



11.4.2 T-Note and T-Bond 

Futures (cont.)
• An example (cont’d):

▫ Consider now the futures maturity date k; for each node j, we can compute the basis for 
each bond 

▫ We know that at each of these nodes (k,j), the trader who is short the futures will choose to 
deliver the bond with the smallest basis; so we compute:

▫ The futures price at time k in node j, Fk,j(k), will move to prevent arbitrage, so that for 
every j the following must occur

minimization is taken across the bonds h = 1,...,n that are eligible for delivery 

▫ In other words, the futures price moves to make the bond price with the smallest basis in 
fact equal to the futures price (corrected by the conversion factor)

▫ That is, Fk,j(k) is given by:

.
▫ Once Fk,j has been computed, the rest of the risk neutral futures tree follows
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11.4.2 T-Note and T-Bond 

Futures (cont.)
• An example (cont’d):

▫ Table 11.20 illustrates the calculations. 
▫ The last three columns report the converted bond price, namely, Ph

k,j / Ch for each bond h
(3%, 6% and 9%) and for each interest rate node j = 0, 1, 2 

▫ The futures price at each node j will equal the minimum across each row 
▫ That is, the futures price in node (k,j) = (2,0) is given by F2,0(2) = 87.86 which 

corresponds to the converted note price of the 3% note 

▫ This is the minimum across the three bonds for that particular interest rate, and thus the 
cheapest-to-deliver is the 3% T-note 

▫ Similarly, F2,2(2) = 117.28 corresponds to the converted price of the 9% Treasury note, 
which in this case is the minimum across all three available notes 

▫ The cheapest-to-deliver is the 9% T-note 
▫ This finding implies that depending on whether interest rates increase or decrease, the T-

note that is the cheapest-to-deliver alternates between T-notes with different coupons 

▫ The futures prices in the tree in Table 11.20 are always lower than the corresponding 
futures prices for the case only the 6% Treasury note was available 

▫ This lower futures price reflects the option that is implicit in the futures contract 

▫ The other two options (wild card option and end-of-the-month option) would also 
decrease the futures price.











11.5 IMPLIED TREES: FINAL 

REMARKS• What do we do with this model, now?
• By construction, the model exactly prices zeros and caps, 

so we cannot use this model to price those
1. The model is useful for computing hedge ratios:

where c1,u and c1,d are the values of the securities sold in 
the two interest rate scenarios and V1,u and V1,d are the 
values of the interest rate chosen to hedge the exposure

2. Once fitted to zeros and caps, the model can be used to 
obtain the price of other interest rate securities, such as 
structured notes, swaptions, American swaptions, and so 
on
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