4.5 Limit superior and limit inferior, part 1

Definition 1. Suppose x_n is a sequence of real numbers. A point $x \in \mathbb{R}$ is called a **cluster point** of x_n if for all $\epsilon > 0$, there are infinitely many n such that $|x_n - x| < \epsilon$.

Examples

(a) For $x_n = (-1)^n$, it is easy to see that $x = \pm 1$ are the cluster points of x_n.

(b) The sequence $x_n = 1 + (-1)^{n+1}$ has a unique cluster point $x = 1$.

(c) The sequence $x_n = n$ has no cluster point.

(d) There is a sequence x_n with three cluster points. For example, the sequence

$$x_n = \begin{cases}
0 - \frac{1}{n}, & \text{if } n = 3k; \\
1 - \frac{1}{n}, & \text{if } n = 3k + 1; \\
2 + \frac{1}{n}, & \text{if } n = 3k + 2
\end{cases}$$

has cluster points 0, 1, 2.

(e) The sequence $x_n = \sin(n)$ has uncountably many cluster points.

(f) It is known that for a closed set $C \subset \mathbb{R}$ there exists a sequence x_n such that the set of cluster points of x_n is C. Do you think there is a sequence whose cluster points constitute \mathbb{Q}?

Remark. If x is an accumulation point of the set $\{x_1, x_2, \ldots\}$, then x must be a cluster point of the sequence x_n. However, the converse needs not be true.

Proposition 2. For a given sequence x_n, TFAE.

1. $x \in \mathbb{R}$ is a cluster point of x_n.

2. $\forall \epsilon > 0$ and $\forall K \in \mathbb{N}$, $\exists n \geq K$ such that $|x_n - x| < \epsilon$.

3. There exists a subsequence x_{n_k} of x_n such that $x_{n_k} \to x$.

1
Proof. (1) → (2): Suppose $\epsilon > 0$ and $K \in \mathbb{N}$ are given. Then since x is a cluster point of x_n, there are infinitely many n such that $|x_n - x| < \epsilon$. Thus, at least one such n should be greater than K.

(2) → (3): We use (2) with $\epsilon = 1$ and $K = 1$, and get n_1 such that $|x_{n_1} - x| < 1$. Then use (2) with $\epsilon = 1/2$ and $K = n_1 + 1$, and get $n_2 > n_1$ such that $|x_{n_2} - x| < 1/2$.

Suppose that we have found $n_1 < n_2 < \cdots < n_k$ such that $|x_{n_j} - x| < 1/j$ for all $j = 1, 2, \ldots, k$. Then from (2) with $\epsilon = 1/(k + 1)$ and $K = n_k + 1$, we see that there exists $n_{k+1} > n_k$ such that $|x_{n_{k+1}} - x| < 1/(k + 1)$. By repeating this process, one can get a subsequence x_{n_k} such that $|x_{n_k} - x| < 1/k$. Then definitely $x_{n_k} \to x$, as we wished.

(3) → (1): For any given $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that $k \geq K$ implies $|x_{n_k} - x| < \epsilon$ (\because $x_{n_k} \to x$). Therefore infinitely many x_n's ($= x_{n_K}, x_{n_{K+1}}, x_{n_{K+2}}, \ldots$) are in $N(x, \epsilon)$. \hfill \square

Theorem 3. A sequence x_n converges to x if and only if x_n is bounded and x is the only cluster point of x_n.

Proof. (\longrightarrow) Since x_n converges to x, x_n is definitely bounded and x is a cluster point of x_n. Thus all we need to show is that x is the unique cluster point of x_n. But if $y \in \mathbb{R}$ is a cluster point of x_n, there exists a subsequence x_{n_k} that converges to y. But x_{n_k} also converges to x since x_n converges to x, hence we have $x = y$ by the uniqueness of the limit.

(\longleftarrow) Suppose $x_n \not\to x$. Then $\exists \epsilon > 0$ and a subsequence x_{n_k} such that $|x_{n_k} - x| \geq \epsilon$ for all $k = 1, 2, \ldots$. But since x_{n_k} is bounded, there is a sub-subsequence $x_{n_{k_j}}$ (i.e., a subsequence of x_{n_k}) such that $x_{n_{k_j}} \to y$ for some $y \in \mathbb{R}$. This means that y is a cluster point of x_n, hence $x = y$ by our assumption. But this gives a contradiction, since

$$\epsilon \leq |x_{n_{k_j}} - x| < \frac{\epsilon}{2},$$

for sufficiently large j. This completes the proof. \hfill \square

Definitions for limsup and liminf

Suppose x_n is a bounded sequence in \mathbb{R}. Let $A_k = \{x_k, x_{k+1}, x_{k+2}, \ldots\}$ and $s_k = \sup(A_k)$. Since x_n is bounded, the sequence s_k is well-defined and
bounded below. Moreover, \(s_k \) is decreasing because \(A_1 \supset A_2 \supset A_3 \supset \cdots \). In other words, \(s_k \) is decreasing and bounded below, hence convergent. Now we define the **limit superior** (상극한) of \(x_n \) by

\[
\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{k \to \infty} s_k = \inf \{ s_k : k \in \mathbb{N} \} = \inf \sup_{n \geq k} \{ x_n \}.
\]

Similarly, if we define \(l_k = \inf(A_k) \), then \(l_k \) is increasing and bounded above, hence convergent. Thus we define the **limit inferior** (하극한) of \(x_n \) by

\[
\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \sup_{k \to \infty} l_k = \sup \{ l_k : k \in \mathbb{N} \} = \sup \inf_{n \geq k} \{ x_n \}.
\]

If \(x_n \) is not bounded above, we define \(\limsup x_n = \infty \). Note that in this case, \(s_k = \infty \) for all \(k \). If \(x_n \to -\infty \), then we define \(\limsup x_n = -\infty \). In this case the sequence \(s_k \) is well-defined, but it is not bounded below. If \(x_n \) is bounded above, not bounded below, and not going to \(-\infty \), then one can check that \(s_k \) is a convergent sequence and we define \(\limsup x_n = \lim s_k \) as before.

Similarly we define \(\liminf x_n = -\infty \) if it is not bounded below, and \(\liminf x_n = \infty \) if \(x_n \to \infty \). Otherwise we define \(\liminf x_n = \lim l_k \).

Remark

(a) Note that the expressions \(\limsup x_n = \inf_k \sup_{n \geq k} \{ x_n \} \) and \(\liminf x_n = \sup_k \inf_{n \geq k} \{ x_n \} \) are still valid even when \(x_n \) is unbounded, whereas the sequences \(s_k \) and \(l_k \) may not be well-defined in this case.

(b) For any sequence \(x_n \), the limit superior and limit inferior always exist, while the limit itself may not.