회로 실험 강의 내용

6주차: 키르히호프의 전압 및 전류 법칙

신한대학교 전자공학전공 조 성 재 sjcho@shinhan.ac.kr

6주차 - 키르히호프의 전압 및 전류 법칙

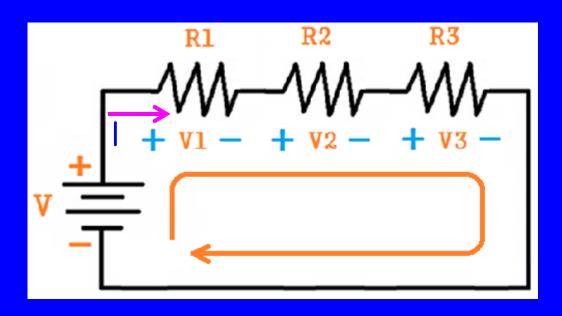
키르히호프의 법칙

1. 키르히호프의 전압법칙 (KVL)

Kirchhoff's Voltage Law

폐회로에서 모든 전압의 합은 0이다.

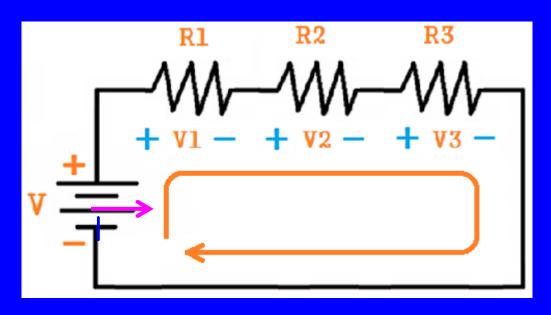
2. 키르히호프의 전류법칙 (KCL)


Kirchhoff's Current Law

한점으로 흘러들어오는 전류의 합은 흘러나가는 전류의

합과 같다.

직렬회로와 KVL법칙


1. 키르히호프의 전압법칙 (KVL: Kirchhoff's Voltage Law) 폐회로에서 모든 전압의 합은 0이다.

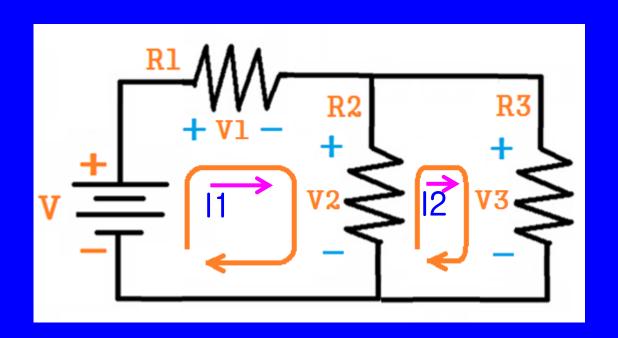
$$-V + V1 + V2 + V3 = 0$$

 $V = V1 + V2 + V3$

KVL법칙을 이용한 풀이

1. KVL 법칙을 적용해서 풀이를 할 때 변수는 전류로 한다.

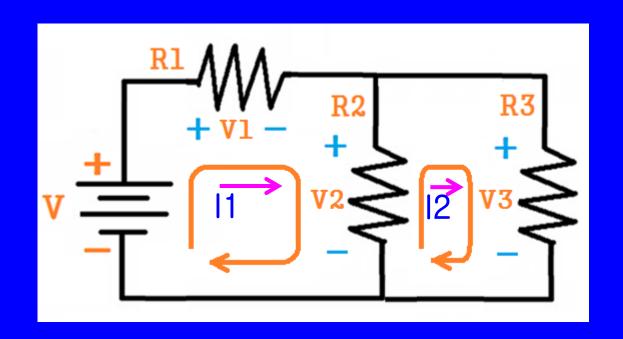
전압 관계를 변수인 전류로 표현하면 다음과 같다.


$$V = V1 + V2 + V3$$

$$V = I * (R1 + R2 + R3)$$

$$I = V/(R1 + R2 + R3)$$

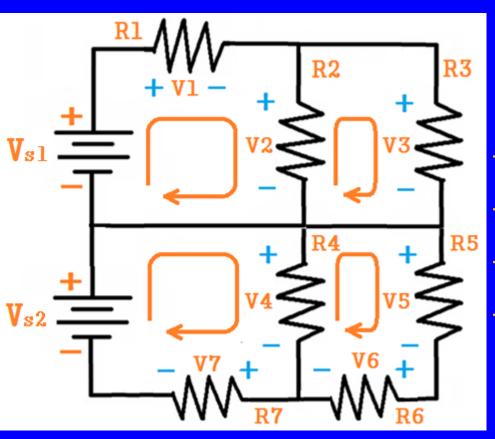
직병렬 회로의 KVL 법칙


 먼저 KVL 법칙을 적용하여 두개의 폐회로에서 전압 관계를 표현하면 다음과 같다.

$$-V + V1 + V2 = 0 \longrightarrow V = V1 + V2$$

 $-V2 + V3 = 0 \longrightarrow V2 = V3$

KVL법칙을 이용한 풀이

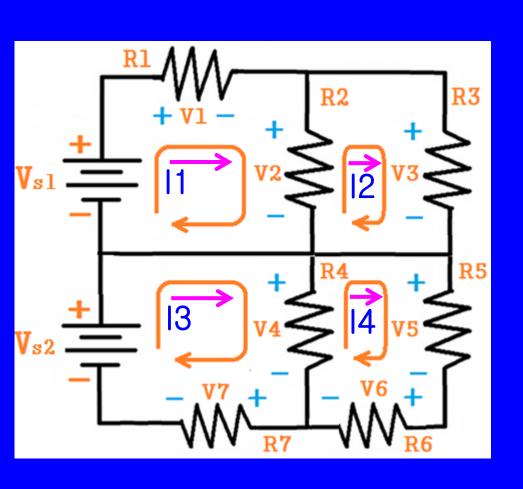

1. KVL 법칙을 적용해서 풀이를 할 때 변수는 전류로 한다.

$$-V + V1 + V2 = -V + I1*R1 + (I1-I2)*R2 = 0$$

 $-V2 + V3 = -(I1-I2)*R2 + I2*R3 = 0$

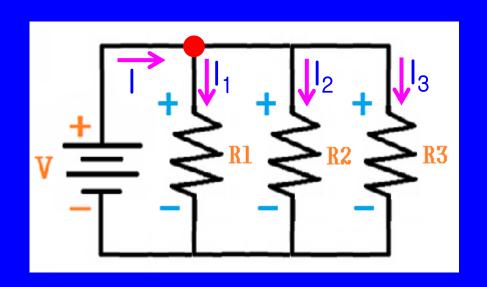
직병렬 회로의 KVL 법칙

 먼저 KVL 법칙을 적용하여 4개의 폐회로에서 전압 관계를 표현하면 다음과 같다.


$$-Vs1+V1+V2 = 0 \longrightarrow Vs1=V1+V2$$

$$-V2+V3=0$$
 \longrightarrow $V2=V3$

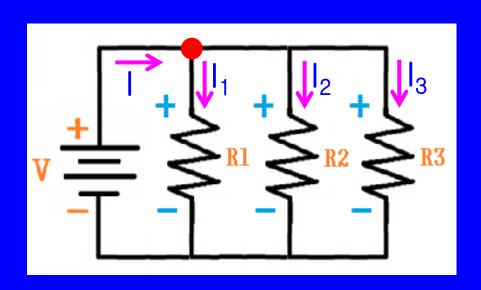
$$-Vs2+V4+V7 = 0 \longrightarrow Vs2=V4+V7$$


KVL 법칙을 이용한 풀이

1. KVL 법칙을 적용해서 풀이를 할 때 변수는 전류로 한다.

병렬회로와 KCL법칙

1. 키르히호프의 전류법칙 (KCL: Kirchhoff's Current Law) 한점으로 흘러들어오는 전류의 합은 흘러나가는 전류의 합과 같다. 한점으로 흘러들어오는 전류의 합은 0이다. 한점으로 흘러나가는 전류의 합은 0이다.

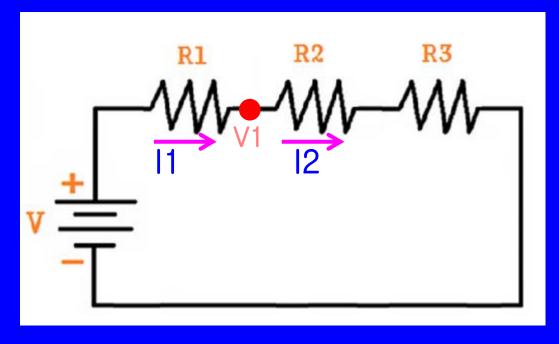


$$I = I1 + I2 + I3$$

 $I - I1 - I2 - I3 = 0$
 $-I + I1 + I2 + I3$

KCL법칙을 이용한 풀이

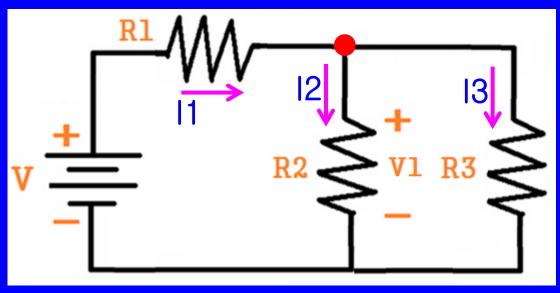
1. KCL 법칙을 적용해서 풀이를 할 때 변수는 전압으로 한다.


- 점으로 표시된 노드로 흘러들어오는 전류 I는 흘러
 나가는 전류 I1, I2, I3의 합과 같다.
- 이 전류들을 전압으로 표시하면 된다.

$$I = I1 + I2 + I3$$

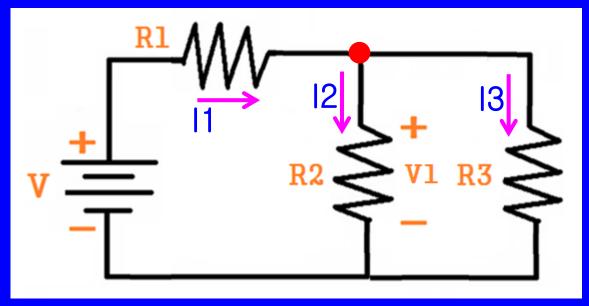
 $I = V/R1 + V/R2 + V/R3$

직렬회로와 KCL법칙


- 1. 점으로 표시된 노드에서 KCL을 적용한다.
 - 흘러들어오는 전류 I1은 흘러나가는 전류 I2와 같다.
 - 이 전류를 변수인 전압V1으로 표현하면 된다.

I1=I2 (V-V1)/R1=V1/(R2+R3)

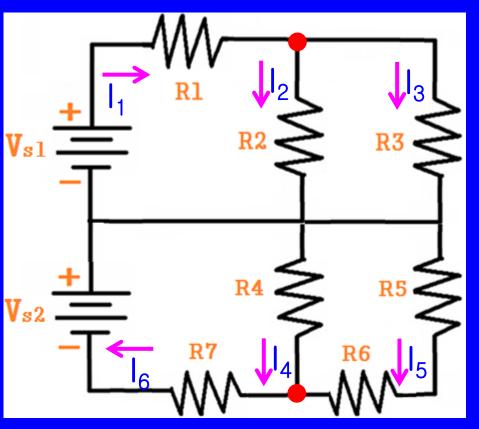
직병렬 회로의 KCL 법칙


- 1. 점으로 표시된 노드에서 KCL을 적용한다.
 - 한점으로 흘러들어오는 전류 I1은 흘러나가는 전류 I2와 I3의 합과 같다.

$$-|1 + |2 + |3 = 0$$

 $|1 = |2 + |3|$

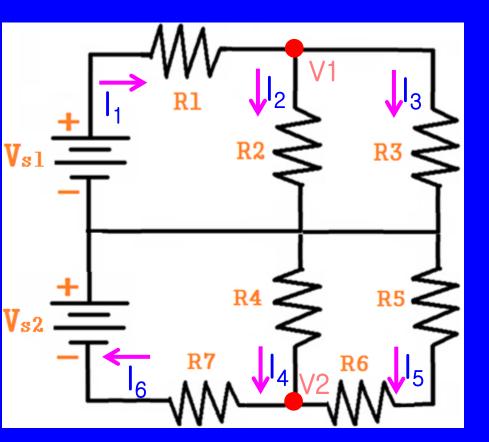
KCL 법칙을 이용한 풀이


- 1. KCL 법칙을 적용해서 풀이를 할 때 변수는 전압으로 한다.
 - 전류를 전압으로 표시

$$I1 = I2 + I3$$

 $(V-V1)/R1 = V1/R2 + V1/R3$
 $V1 (1/R1 + 1/R2 + 1/R3) = V/R1$

직병렬 회로의 KCL 법칙


- 1. 점으로 표시된 노드에서 KCL을 적용한다.
 - 한점으로 흘러들어오는 전류는 흘러나가는 전류 의합과 같다.

$$-|1 + |2 + |3 = 0$$
 \longrightarrow $|1 = |2 + |3$
 $-|4 - |5 + |6 = 0$ \longrightarrow $|6 = |4 + |5$

KCL 법칙을 이용한 풀이

- 1. KCL 법칙을 적용해서 풀이를 할 때 변수는 전압으로 한다.
 - 전류를 전압으로 표시

$$I1 = I2 + I3$$

$$(Vs1-V1)/R1 = V1/R2 + V1/R3$$

$$I4 + I5 = I6$$

$$-V2/R4 - V2/(R5+R6)$$

$$= (V2+Vs2)/R7$$

KCL과 KVL법칙을 이용한 회로해석

- ◆ 앞서 예제의 회로와 같이 회로가 주어졌을 때 KCL 법 칙과 KVL 법칙을 이용하여 해석할 수 있다.
- ◆ KVL 법칙을 이용하여 회로를 해석할 경우
 - 폐회로에서의 전압의 합은 0으로 하여 수식 전개
 - 변수는 전류로 하여 풀이
- ◆ KCL 법칙을 이용하여 회로를 해석할 경우
 - 노드에서 흘러들어오는 전류의 합은 흘러나가는
 전류의 합과같게 하여 수식 전개
 - 변수는 전압으로 하여 풀이
- ◆ 이렇게 구해진 전류와 전압을 이용하여 각 부품의 전압과 전류를 구할 수 있다.