Inorganic Chemistry 1

Instructor – Prof. Tae-Soo You

- office: S1-6, 414
- phone: 261-2282
- email: <u>tsyou@chungbuk.ac.kr</u>
- web: <u>http://issmlab.chungbuk.ac.kr/</u>
- **T/A:** Woongjin Choi (S1-6, 407)

Office hour: by appointment

Objectives of this course:

As a first half of the inorganic chemistry class for chemistry majoring students, basic inorganic theories and principles will be covered during this lecture.

This includes ,,,

- Ch1. Intro. to Inorg. Chem.,
- Ch2. Atomic structure,
- Ch3. Simple bonding theory,
- Ch4. Symmetry and group theory,
- Ch5. Molecular orbitals,
- Ch6. Acid-base and donor-acceptor chemistry,
- Ch7. The crystalline solid state

Text books:

- 1) Inorganic Chemistry, Gary L. Miessler; Donald A. Tarr, Pearson, 5th Edition
- 2) Inorganic Chemistry, James E. Huhey, Harper Collins, 1993
- 3) Molecular Symmetry and Group Theory, Alan Vincent, Wiley, 1998
- 4) Inorganic Structural Chemistry, Ulich Mueller, Wiley, 2002

Tentative Class Schedule

		Quiz (X 6)
1 - 2 week:	Ch.1 Introduction to Inorganic Chemistry	
	Ch.2 Atomic Structure	3/8(T) – Ch.2
3-4 week:	Ch.3 Simple Bonding Theory	3/15(T) – Ch.3
5-6 week:	Ch.4 Symmetry and Group Theory	3/29(T) – Ch.4
7 week:	Team Present1(4/12(T))	
8 week:	<u>Mid-term Exam. (4/19(T))</u> + KCS	
9 -10 week:	Ch.5 Molecular Orbitals	4/26 (T) – Ch.5
11-12 week:	Ch.6 + Team Present2 (5/18(W))	5/4 (W) – Ch.6
13-14 week:	Ch.7 The Crystalline Solid State	5/17(T) – Ch.7
15 week:	<u>Final Exam. (6/7(T))</u>	

Grading: total 300

- 1) mid-term: 100
- 2) final exam: 100
- 2) team present*: 50
- 3) attendance + attitude: 25
- 4) quiz**: 25

**Quiz:

- 1) Quiz will be given <u>6 times</u> on the scheduled days.
- 2) Homework (Chapter summary) will be evaluated via quiz.
- 3) Quiz problems will be selected from homework (summary topic) topics.
- 4) < 10 min. (2-3 questions)

*Presentation:

- 1) one group of <u>5-6 classmates</u> (10 groups)
- 2) If you cannot choose a topic or articles, consult with Prof. You.
- 3) Topics related to Inorganic Chemistry
- 4) 10 min. presentation (3 min. in English + 7 min. in Korean) + Q/A (5 min)
 - PPT presentation on class-related literature paper(s) from a reviewer' s perspective
 - Each rep. will be presenting, but a whole group should participate in a presentation.
 - The presentation will be graded by Prof. You.
 - *(The English Presentation can be helped by a <u>Native speaker lecturer</u> @ Office of International Services)

Others

- Class related information and lecture slides will be available on KOCW (http://www.kocw.net) or e-campus (http://ecampus.cbnu.ac.kr)
- 2) Previous team presentation references (videos) are available on KOCW.
- 3) **Summary topics** will be given prior to each chapter on e-campus.

1.1 What is Inorganic Chemistry?

- organic chemistry: hydrocarbon compounds and their derivatives
- inorganic chemistry: everything else including all remaining elements in the periodic table, as well as carbon
- research area included in inorganic chemistry
 - 1) organometallic chemistry: bridging organic and inorganic chemistry area
 - 2) bioinorganic chemistry: bridging biochemistry and inorganic chemistry
 - 3) environmental chemistry: including inorganic and organic compounds
 - 4) solid-state chemistry: including inorganic and physical chemistry

- both: single, double, triple covalent bonds
- inorganic chemistry: including direct metal-metal bonds, metal-carbon bond

© 2014 Pearson Education, Inc.

Fig1.1

1.2 Contrasts with Organic Chemistry

- organic chem.: max. number of bonds b/w two carbons \rightarrow 3
- inorganic chem.: <u>quadruple</u> bonds b/w metals are possible
 - : (1 x σ (sigma), 2 x π (pi), 1 x δ (delta))
 - : δ is possible due to the d orbital of metal atoms used in bonding (Fig1.2)
 - : even "five-fold" bond b/w transition metals is reported \rightarrow <u>quintuple</u> (Fig.1.3)

1.2 Contrasts with Organic Chemistry

- H atoms : 1) organic chem.: H bonded to a single carbon
 - 2) inorganic chem.: bridging two or more other atoms
 - ex) in metal cluster compds. bridging across edges or faces of polyhedra of metal atoms
- alkyl group: 1) organic chem.: rarely act as bridge
 - 2) inorganic chem.: some examples

Each CH₂ bridges a face of the Li, tetrahedron.

© 2014 Pearson Education, Inc.

Fig1.4

- coordination number and geometry
 - 1) carbon: maximum coordination number \rightarrow 4 (4 atoms bonded to C, e.g., CH₄)
 - 2) inorganic compds: central atom w/ 5,6,7,... higher coordination number
 - ex) most common coordination geometry for TM: <u>octahedron</u>, e.g., $[TiF_6]^{3-1}$ metal atoms
- different coordination geometry: 1) 4-coordinated carbon: tetrahedral

2) inorganic chem.: tetrahedral & square-planar

- coordination complex: central metal w/ anions or neutral molecules bonded to them through N, O, S
- organometaliic complex: metal atoms or ions w/ directly bonded to carbons
- tetrahedral geometry: 1) carbon compds.: 4-coordinated compds. (CH_4)

2) elemental phosphorous: tetratomic w/o a central atom ($\underline{P}_{\underline{4}}$)

- aromatic rings: 1) organic chem.: aryl group sigma bonded to metals

- 2) inorganic chem.: <u>rings pi-bonded</u> to metals (Fig. 1.6)
 - metal atom bonded above the center of the ring
 - metal atoms sandwiched b/w two aromatic rings
 - multiple-decker sandwiched

© 2014 Pearson Education, Inc.

- Carbon centered metal cluster: C is at the center of a polyhedron of 5, 6, or more surrounding metal atoms

© 2014 Pearson Education, Inc.

 <u>elemental carbon</u>: the past quarter century is the realm of chemistry of elemental carbon.

ex) fullerene C₆₀ ("buckminster fullerene") fullerene compds. carbon nanotube

graphene

 interested in applications in fields
 as divers as nanoelectronics, body armor, drug delivery

© 2014 Pearson Education, Inc.

Fig1.8

- <u>No sharp dividing</u> lines b/w subfield in chemistry

- 1) acid-base chem., organometallic chem. \rightarrow also for organic chem.
- 2) oxidation-reduction reaction, spectra, solubility relations \rightarrow analytical chem.
- 3) structural determination, spectra, conductivity, theories of bonding \rightarrow physical chem.
- 4) metal-containing enzyme \rightarrow biochem.
- 5) organometallic catalysts \rightarrow petroleum & polymer chem.

- Before alchemy era: in the metallic state gold, copper
 - : copper obtained by reduction of malachite $(Cu_2(CO_3)(OH)_2)$
 - : Ag, Sn, Sb, Pd 3000 BCE
 - : Fe classical Greece, Mediterranean Sea 1500 BCE
 - : colored glass, ceramic glaze SiO_2 as major component & other

metal oxides

- Alchemy era: 1) 1st CE - alchemists in China, Egypt,,,

- tried to "transmute" metal into gold
- developed distillation, sublimation, crystallization,,,
- 2) 1000- 1500 CE alchemists shifted to the Arab and Europe
 - 1150 CE gunpowder in Chinese firework
- 3) 1600 CE chemistry was beginning to take shape as a science

The Lycurgus Cup (made of glass)

- When illuminated from outside, it appears green. However, when Illuminated from within the cup, it glows <u>red</u>.
- Red color is due to very small amounts of gold (Au) powder.
 (about 40 parts per million)

- 17th C: strong acids - nitric acid, sulfuric acid, hydrochloric acid

- salts (acid + base)
- properties of gases
- atomic & molecular weight were determined
- groundwork for the periodic table
- 1869: the concept of atoms & molecules \rightarrow <u>Mendeleev & Meyer</u> (periodic table)
- 1896: the concept of radioactivity by <u>Becquerel</u>
- 1913: atomic theory including subatomic particles, spectra, electricity (by <u>Bohr</u>)
- 1926, 1927: quantum mechanics by <u>Schrödinger & Heisenberg</u>

<Inorganic Chemistry>

- : originally important for <u>mineral sources</u> for qualitative analysis (identify mineral, assess purity and value)
- 20th C: <u>ammonia</u>, nitric acid, sulfuric acid, sodium hydroxide → large scale production
 : coordination chemistry by Werner & Jørgensen
 - : organometallic chemistry
- World War ||: military projects rejuvenated inorganic field
 - \rightarrow <u>Manhattan project</u> (fission bomb, fusion bomb)
- 1940s: great expansion of inorganic chem.
- 1950s: crystal field theory (describing the spectra of metal ions surrounded by negatively charged ion in crystal)

ligand field theory (by molecular orbital theory)

<Inorganic Chemistry>

- 1955: organometallic catalyst by Ziegler & Natta
 - \rightarrow polymerization of ethylene at lower temp. & press.
 - \rightarrow rapid expansion of this field
- <u>biological materials</u> containing metal atoms: model compds. by theoretical work

 \rightarrow new synthetic technique

<Inorganic Chemistry>

- Conversion nitrogen to <u>ammonia</u>: bridging organometallic chem. & bioinorganic chem.

 $\rm N_2 + 3H_2 \rightarrow 2NH_3$

- : reaction requires 400° & 200 atm \rightarrow 15 % yield
- : bacteria (by nitrogenese enzyme using iron-molybdenum-sulfur protein) \rightarrow RT & 0.8 atm
- Medical application: platinum-containing antitumor agents

e.g.) cisplatin (Pt(NH₃)Cl₂), satraplatin

Chapter 2. Atomic Structure

Summary Topic

Chapter2. Atomic Structure

- 1) Balmer's equation
- 2) Niels Bohr's quantum theory
- 3) In Figure 2.2, how can you get $-1/4R_H$ for n = 2?
- 4) Heisenburg' s uncertainty principle
- 5) Hamiltonian in Schroedinger's equation
- 6) The energy levels predicted by the particle in-a-box model for any particle in a one-dimensional box of length a.
- 7) Four quantum numbers (symbols, names, values, roles)
- 8) How to find out the nodal surfaces?
- 9) Pauli' s exclusion principle
- 10) Hund's rule
- 11) Slater's effective nuclear charge Z*
- 12) Ionization energy

- <u>The theory of atomic and molecular structure</u> depend on <u>quantum mechanics</u> to describe atoms and molecules in mathematical terms. Fortunately, it is possible to gain a practical understanding of the principles of atomic and molecular structure <u>with only a moderate amount of mathematics</u> rather than the mathematical sophistication involved in quantum mechanics.
- This chapter presents the fundamentals needed to explain <u>atomic and</u> <u>molecular structures</u> in qualitative or semiquantitative terms.

Chapter 2. Atomic Structure

lonization energy, electron affinity, covalent/ ionic radii.

- Many Chemists had considered the idea of <u>arranging the elements</u> into a periodic table.
- But, due to either <u>insufficient data</u> or <u>incomplete classification scheme</u>, it was not done until Mendeleev and Meyer's time.
- Using similarities in <u>chemical behavior and atomic weight</u>, Mendeleev arranged those families in rows and columns,,,
- and, he <u>predicted</u> the properties of unknown elements, such as Ga, Sc, Ge, Po.

2.1.1 The Periodic Table

- In the modern periodic table :
 - : periods (horizontal row of elements)
 - : group/family (vertical column)
- 3 different ways of designations of groups:
 - : IUPAC, American, European
 - 1) American: main group \rightarrow IA VIIIA;

 $TMs \rightarrow ~ ||| B - ~ V||| B - ~ || ~ B$

2) IUPAC: numbering from 1 through 18 for all group

Grou IA	ips (I	Am IA	erica IIIB	n trad	ition) IVB	VB	VIB	VIIB		VIIIB	_	IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
Grou IA	ips (I	Eur IA	opear IIIA	ı tradi	tion) IVA	VA	VIA	VIIA		VIII		IB	IIB	IIIB	IVB	VB	VIB	VIIB	0
Grou 1	ıps (IUF 2	PAC)		4	5	6	7	8	ـــــــــــــــــــــــــــــــــــــ	10	11	12	13	14	15	16	17	18
1																			2
3								Trans	ition	metals				5					10
etals		Ietals												13			ens	IS	Ises
ali Me		arth N	21		22							ıls	30	31			alcog	aloge	ole Ga
Alka		ine E	39		40							Meta	48	49			Ch	H	Noł
55	;	Alkal	57	*	72							oinage	80	81					86
87	,		89	**	104							ŭ	112						
							1												
				*	58	La	nthani	des										71	
				**	90	А	ctinid	es										103	

© 2014 Pearson Education, Inc.

Fig2.1

 During the 50 years after the Mendeleev's periodic table was proposed, there had been experimental advances and discoveries as shown in Table 2.1.

TABLE 2.1 Discoveries in Atomic Structure								
1896	A. H. Becquerel	Discovered radioactivity of uranium						
1897	J. J. Thomson	Showed that electrons have a negative charge, with charge/mass = $1.76 \times 10^{11} \text{ C/kg}$						
1909	R. A. Millikan	Measured the electronic charge as 1.60×10^{-19} C, therefore the mass of the electron is 9.11×10^{-31} kg, $\frac{1}{1836}$ the mass of the H atom						
1911	E. Rutherford	Established the nuclear model of the atom; a very small, heavy nucleus surrounded by mostly empty space						
1913	H. G. J. Moseley	Determined nuclear charges by X-ray emission, establishing atomic numbers as more fundamental than atomic masses						

© 2014 Pearson Education, Inc.

: <u>Balmer's equation</u> (1885) \rightarrow energy of visible light emitted by H atom

$$E = R_{H} \left(\frac{1}{2^{2}} - \frac{1}{n_{h}^{2}} \right)$$

 n_h : integer, with n_h >2

 R_{H} : Rydberg constant for hydrogen = 1.097 X 10⁷ m⁻¹ = 2.179 X 10⁻¹⁸J

* E is related to the wavelength, frequency, and wave number of the light!!

$$E = h\upsilon = \frac{hc}{\lambda} = hc\overline{\upsilon}$$

h = Planck constant = 6.626 X 10⁻³⁴ Js

- v = frequency of the light, in s⁻¹
- $c = \text{speed of light} = 2.998 \times 10^8 \text{ ms}^{-1}$
- λ = wavelength of the light, frequently in nm
- \bar{u} = wavenumber of the light, usually in cm⁻¹

- Balmer's equation becomes more general by <u>replacing 2^2 by n_{l}^2 </u>. $(n_l < n_h)$
- Niels Bohr's quantum theory of the atom : negative e⁻ in atoms move in circular orbitals around positive nucleus.
 - e⁻ may absorb or emit **light of specific** *E*

$$E = R_H \left(\frac{1}{n_I^2} - \frac{1}{n_h^2}\right)$$

 $R = \frac{2\pi^2 \mu Z^2 e^4}{(4\pi\varepsilon_0)^2 h^2}$

 μ = reduced mass of the electron-nucleus combination

*/ m_e = mass of the electron

 $m_{nucleus}$ = mass of the nucleus

- Z = charge of the nucleus
- *e* = electronic charge
- *h* = Planck constant

 $n_{\rm h}$ = quantum number of describing the **higher energy state**

 $n_{\rm l}$ = quantum number of describing the **lower energy state**

 $4\pi\varepsilon_0$ = permittivity of a vacuum

• Electron transition among *E* levels for the hydrogen atom (Fig. 2.2)

 <u>de Broglie equation</u>: all moving particles have wave properties, which can be expressed as shown below

$$\lambda = \frac{h}{m\nu}$$

 λ = wavelength of the particle

h = Planck constant = 6.626 X 10⁻³⁴ Js

m = mass of the particle

v = velocity of the particle

- e⁻'s wave property is observable due to the <u>very small mass</u>.(1/1836 of the H atom)
- But, we can not describe the motion of e⁻ w/ the wave property precisely because of <u>Heisenberg's uncertainty principle</u>.

Heisenberg's Uncertainty Principle

$$\Delta x \Delta p_x \geq \frac{h}{4\pi}$$

 Δx = uncertainty in the **position** of the electron Δp_x = uncertainty in the **momentum** of the electron

- Thus, there is the inherent uncertainty in the <u>location</u> and <u>momentum</u> of e^{-1} (Δx is large) (Δp_x is small)
- e⁻ should be treated <u>as wave (due to its uncertainty in location)</u>, not simple particles.
- We can't describe **orbits of e**⁻, but can describe **<u>orbitals !!!</u>**

region that describe the <u>probable location of e^{-} </u>

electron density

• Therefore, one should use an equation which <u>describes wave property well !!!</u>

The Schrödinger equation

 The equation describes the wave properties of e⁻ in terms of its <u>position, mass, total E</u> and potential <u>E</u>.

H = the Hamiltonian operator

- *E* = energy of the electron
- Ψ = the wave function
- <u>Hamiltonian operator (H)</u> includes derivatives that operate on the wave function.
- The result is a constant (E) times Ψ .