여과형 집진장치 (Fabric Filters)

● 여과매체

- 확산 (diffusion)
- 관성충돌 (Inertial Impaction)
- 침강 (Settlement)
- 차단 (Interception)

이러한 작용은 빛범위의 크기영역의 입자포집의 목표를 달성한다.

장치개요

- 장점
 - 고효율
 - 설계법에 따라 압력손실이 낮을 수 있음
 - 제어대상 입경범위의 확장성

- 단점
 - 단위 여과면적당 압력손실과다
 - 처리기체 온도에 제한 (재질의 약화)
 - 화재에 취약 (Oil Mist 등 집진시)
여과재에서의 집진효율

- Fiber(섬유 직경): D_f
- 여과재 단위부피 당 들어있는 Fiber의 길이: L_f
- 여과재 단위부피 당 필터로 채워져 있는 부피: $a = \pi D_f^2/4 \cdot L_f$

Filter 내에서 기체속도

A_e : 여과지 단면적
A : 여과지 단면적 중 Filter가 차지하는 면적을 감한 면적
\overline{u} : 주류에서의 유체 평균속도
u_∞ : 필터 내에서 유체의 평균속도

\[Q = \overline{u} A_e = u_\infty A_e (1 - a) = u_\infty A \quad \text{여기서} \quad u_\infty = \frac{\overline{u}}{1 - a} \]

Filter 내에서 기체흐름 방향에 대한 입자질량 수지

\[\overline{u} A_e (N_x - N_{x+dx}) = (\text{단위 여과재 부피당 집진영역}) \times (\text{여과재 부피}) \times (\text{단위부피당 입자수}) \times (\text{개별 Fiber의 집진효율}) \]

\[= u_\infty D_f L_f A_e \, dx \, N_x \, \eta_T \]

\[\frac{dN}{dx} = - \frac{4a\eta_T}{\pi (1 - a) D_f} N, \quad \int_{N(0)}^{N(L)} \frac{dN}{N} = - \int_0^L \frac{4a\eta_T}{\pi (1 - a) D_f} \, dx \]

\[N(L) / N(0) = \exp \left[- \frac{4a \eta_T L}{\pi (1 - a) D_f} \right] \]

\[\eta(d_f) = 1 - \frac{N(L)}{N_0} = 1 - \exp \left[- \frac{4a \eta_T L}{\pi (1 - a) D_f} \right] \]
개별 Fiber의 집진효율(Single Target Efficiency): η_T

\[\eta_T = \eta_H + \eta_{DI} + \eta_{BD} + \eta_G \]

η_H: 차단에 의한 집진효율
η_{DI}: 관성충돌에 의한 집진효율
η_{BD}: 브라운 확산에 의한 집진효율
η_G: 브라운 확산에 의한 집진효율

설명: 입자의포짐에 영향을주는 요소에 대해
입자가 하나가 작용효과 I에 의해 Target(Fiber)에 포집될 확률: η_H
입자가 하나가 작용효과 I에 의해 Target(Fiber)에 포집되지 않을 확률: $1 - \eta_H$
입자가 하나가 작용효과 DI에 의해 Target(Fiber)에 포집될 확률: η_{DI}
입자가 하나가 작용효과 DI에 의해 Target(Fiber)에 포집되지 않을 확률: $1 - \eta_{DI}$
입자가 하나가 작용효과 BD에 의해 Target(Fiber)에 포집될 확률: $\eta_{ BD}$
입자가 하나가 작용효과 BD에 의해 Target(Fiber)에 포집되지 않을 확률: $1 - \eta_{ BD}$
입자가 하나가 작용효과 G에 의해 Target(Fiber)에 포집될 확률: η_G
입자가 하나가 작용효과 G에 의해 Target(Fiber)에 포집되지 않을 확률: $1 - \eta_G$

입자가 하나가 어떤 영향 하에서는도 Target(Fiber)에 포집되지 않고 빠져 나갈 확률:
\[(1 - \eta_H)(1 - \eta_{DI})(1 - \eta_{ BD})(1 - \eta_G) \]

개별 입자가 어떤 경우라도 포집될 확률(Single Target Efficiency):

\[\eta = 1 - (1 - \eta_H)(1 - \eta_{DI})(1 - \eta_{ BD})(1 - \eta_G) \]
\[= \eta_H + \eta_{DI} + \eta_{ BD} + \eta_G - (\eta_H \eta_{DI} + \eta_{ BD} + \eta_G - \eta_H \eta_{DI} \eta_{ BD} + \eta_H \eta_{DI} \eta_G) \]
\[\approx \eta_H + \eta_{DI} + \eta_{ BD} + \eta_G \]

기타자료: OHP 참조
여과시스템의 운영

- 압력강하

. 여과시스템에서 여과장치에 따른 압력강하: \(\Delta p_t \)

\[
\Delta p_t = \Delta p_f + \Delta p_b + \Delta p_s
\]

\(\Delta p_f \): 필터 여과에 의한 압력손실
\(\Delta p_b \): 포집된 입자층에 의한 압력손실
\(\Delta p_s \): 여과장치(bag house)의 구조에 의한 손실

. 여과재에서 여과장치에 따른 압력강하: \(\Delta P_T \)

\[
\Delta P_T = \Delta P_R + \Delta P_C = \frac{\mu_g x_R V}{K_R} + \frac{\mu_g x_c V}{K_C}
\]

\(Darcy's~Equation \)

\(\Delta P_R \): 잔류 압력 강하(필터 여과에 의한 압력손실)
\(\Delta P_C \): 포집된 입자층에 의한 압력손실
\(\mu_g \): 여과대상기체의 점도
\(x_R \): 여과재의 두께치수
\(x_c \): 포집된 입자층의 두께
\(K_R \): 여과재의 저항계수
\(K_C \): 입자층의 저항계수
\(V \): 여과층의 기체 통과속도

. 시간에 따른 입자 여과층의 두께변화

시간 \(t \) 동안 여과되는 입자질량 = (기체속도)\(\times \)(단면적)\(\times \)(시간)\(\times \)(입자농도)\(\times \)(포집효율)

\[
= V \times A \times t \times C_i \times \eta = \rho_c A x_c
\]

. 시간에 따른 입자 여과층의 압력강하 변화

\[
\Delta P_C = C_i V t \left(\frac{\mu_g V}{K_c} \right) = \left(\frac{\mu_g}{K_c \rho_p c} \right) C_i V^2 t
\]

\(\rho_c = \rho_p c \): \(c \) packing density

. 시간에 따른 여과재의 압력강하 변동 예측 방정식

\[
\Delta P_T = \Delta P_R + \Delta P_C = \Delta P_R + \left(\frac{\mu_g}{K_c \rho_p c} \right) C_i V^2 t = \Delta P_R + K_2 C_i V^2 t
\]

\[
\Delta P_T = \Delta P_R + K_2 C_i V^2 t \quad \frac{\Delta P_T}{V} = \frac{\Delta P_R}{V} + K_2 C_i V t
\]

여과재에서의 압력강하가 선형식으로 나타나지며 압력의 시간적 변동예측이 가능

\[
S_T = S_R + K_2 W \quad S_T = \frac{\Delta P_T}{V} \quad S_R = \frac{\Delta P_R}{V} \quad W = C_i V t
\]
- 여과시스템의 재생

- 여과시스템의 성능과 운전비용