췌장 홀몬 혈당 강하제

학습목적

• 각조직에 대한 insulin의 작용을 이해하고, insulin과 혈당 강하제의 임상 용도를 설명한다.

학습목표

- 1. Insulin과 그 수용체의 구조 및 기능에 대하여 설명한다.
- 2. Insulin 제제를 작용 시간에 따라 분류하고, 각 각의 예를 2가지 이상 열거한다.
- 3. Insulin 치료 시 나타날 수 있는 부작용 및 이에 대한 대처방법을 설명한다.
- 4. Sulfonylurea의 작용기전에 대하여 설명하여라.
- 5. Sulfonylurea와 biguanide 유도체의 차이점을 설명한다.

A. 당뇨병의 종류

특징	제1형 당뇨병	제 2 형 당뇨병
연령	30대 이전	40대 전후
종류	갑작스러운 발병	서서히 진행되는 발병
영양상태	보통 마른 체격	보통 비만 체격
증상	조갈증(Polydipsia), 다식증 (polyphagia), 다뇨증(polyuria)	거의 없음
케톤증	적당한 근력운동이나 식이요법 을 하지 않는한 빈번하게 일어남	감염이나 스트레스로 인한것 외 에는 거의 일어나지 않음
내인성 인슐린	거의없음	존재: 그러나 비만에는 별 효과 가 없음.
관련된 지질 기형	빈번한 과콜레스테롤혈증	콜레스테롤과 트리글리세리드가 종종 높아짐; 탄수화물에 의한 고중성지방혈증
인슐린 치료	필요함	오직 20-30% 환자에게만 필요
저혈당 약물	사용되지 않음	임상적으로 필요함
식이요법	혈당조절을 위해 인슐린이 의무 적으로 필요함	혈당조절을 위한 식이요법이면 충분함

B. 당뇨병의 발병

제1형 당뇨병

- 1) 당다뇨증(Polyuria), 조갈증(Polydipsia), 체중감소(Weight loss), 시력저하(Blurred vision)
- 2) 인슐린을 생산하는 beta-cell의 파괴
- 자가면역 파괴
- 대게 lymphocytic infiltration이 원인
- suppressor-inducer T cell의 증가 또는 helper-inducer T cell의 감소
- anti-islet cell antibodies (ICAs)의 출현

제2형 당뇨병

- 1) 인슐린 분비 부전(Impaired insulin secretion), 말초성 인슐린 저항증(peripheral insulin resistance), 과도한 간장 글루코오즈의 생산(excessive hepatic glucose production)
- 2) 지방세포에서 분비되는 몇몇 생물학적 생산물질들은 (leptin, TNF-a, free fatty acids, resistin, adiponectin) 인슐린 분비, 인슐린 활동 등을 조절한다.
- 3) insulin receptor (insulin clamp technique)는 두드러지게 감소하지 않는다.
- 4) insulin receptor의 구조 또는 tyrosine kinase에서 기형은 나타나지 않고, 완전한 기능을 한다.
- 5) 인슐린에 의해 조절되는 tyrosine kinase의 자극과 autophosphorylation 은 제2형 당뇨병에서는 차이가 없다.

C. 인슐린 수용체

수용체는 single polypeptide precursor와 같은 target cells에서 합성된 다음 분열되어 membrane으로 삽입된다.

$$ED_{50}$$
 range = 10^{-11} M

Kd (binding) =
$$10^{-9}$$
M

β-agonist : cAMP ↑, phosphorylation

- 1) beta subunits의 특정 serine과 threonine residues : insulin binding의 억제와 tyrosine kinase 활성을 일어나게 한다.
- 2) Receptor의 내재화를 일어나게 한다.

Glucose transporters

Transporter (운반체)	Tissues (조직)	Glucose Km (mmol/L)	Function (기능)
GLUT1	모든 조직, 특별히 뇌의 적혈구	1-2	포도당의 기본 흡수; 혈액과 뇌 사이의 수 송
GLUT2	췌장의 β cells, 간, 신장, 장	15–20	인슐린 분비의 조절, 다른 양상의 항상성
GLUT3	뇌, 신장, 태반, 다른 조직들	<1	뉴론과 다른 조직으 로의 흡수
GLUT4	근육, 지방질	= 5	인슐린은 포도당의 흡수를 조절
GLUT5	장, 신장	1-2	과당의 장내 흡수

D. 인슐린의 분비

- ATP sensitive K+ channel determines the resting potential of β -cells
- 포도당 물질대사: \uparrow ATP \rightarrow K+ 채널의 닫힘 \rightarrow depolarization \rightarrow Ca²⁺ 채널의 열림

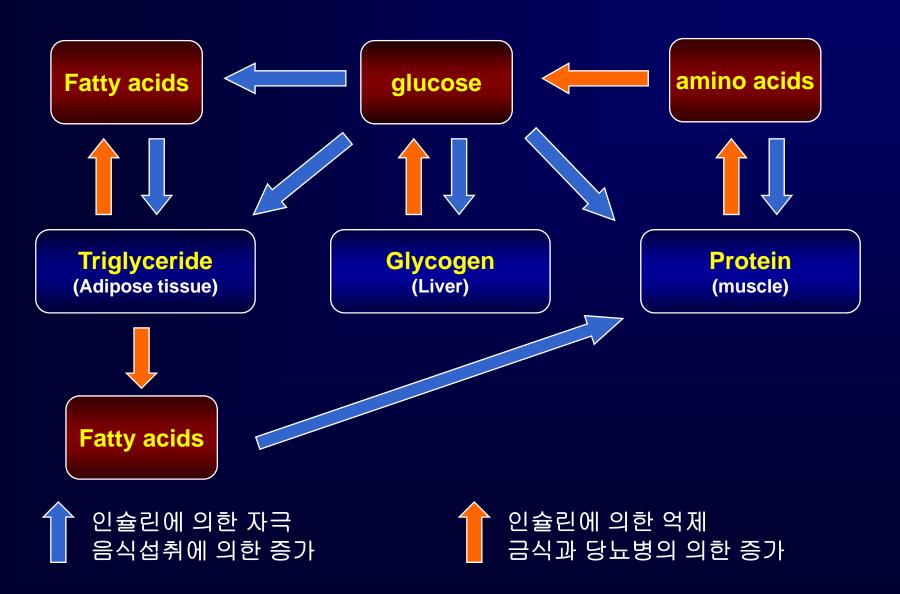
↑인슐린 분비 증가

- 1) Glucagon
- 2) ACTH
- 3) Growth hormone
- 4) Secretin
- 5) Gastrin
- **6) CCK**
- 7) Pancreozymin
- 8) Cholinergic agonist

↓인슐리 분비 감소

- 1) Somatostatin
- 2) α-adrenergic agonist

E. 인슐린 형식


Insulin Type (인슐린 타입)	Onset (hr) (시작시간)	Duration (hr) (지속시간)	Peak (hr) (최고점)	Other Characteristics (다른 특성들)
Rapid action regular, crystalline zinc insulin [CZI]	0.5-1.0	3-6	2-3	피하 주사; 식사 30-60분 전 투 여
Lispro, insulin aspart	<0.25	3-4	0.5-1.5	
Intermediate (Lente, neutral protamine Hagaforn[NPH] insulin)	2-4	10-20	4-10	주사 10분 전에 CZI 를 섞을 필요 없음.
Long acting (Ultralente)	8–14	24-36	최소	Because of very long-half life, new steady state is not reached for 4-5 days after change in dose

[∴] Human insulin → humulin R, Novolin R

일반적으로 멀티 투약시 인슐린 의 투여방법

- A. 대표적인 split-mixed 투여방법은 regular와 intermediate-action이 복합된 인슐린을 1일 2회 주사하는 것으로 이루어져 있다.
- B. intermediate-acting 인슐린의 저녁 투약은 다음날 아침 이용할 수 있는 인슐린의 총량이 증가되게 하기 위해 취침시간까지 지연되어진다.
- C. 혼합된 ultralente 인슐린의 투여.
- D. 연속적인 피하의 인슐린 주입.

F. 인슐린 활성의 개관

G. 부작용

- 1) 심한 저혈당증 (Severe hypoglycemia)
- 2) 인슐린 과민반응 (Insulin allergy)
- 3) 인슐린 지방비후 (Insulin lipodystropy)
- 4) 비만

H. 저혈당 vs. 당뇨 혼수

	Hypoglycemic Coma (저혈당 혼수)	Diabetic Coma (당뇨병의 혼수)	
Onset (시작)	신속함	점차적임 – over days	
Acidosis, dehydration (산혈증, 탈수증)	없음	++++	
Preceding infection (이전의 감염)	없음	일반적임, 종종 구토와 설사	
Skin (피부)	창백함, 발한	뜨겁거나 건조함	
Respiration (호흡)	일반적이거나 얕음	깊음- 'air hunger'	
CNS (중추신경계)	불안, 가끔의 경련; 바빈스키 신호	일반적으로 우울함	

III. 경구용 저혈당과 항고혈당 물질들의 약리학

Sulfonylurea: 술포닐 요소 (혈당 강하 작용이 있는 당뇨병의 경구약)

A. 약리학적 활성:

- 1) 경구 또는 비경구로 저혈당 수준에서 준다.
- 2) 췌장 기능이 존재 할때만 효과가 있다.
- 3) 표준의 물질대사 상태에서만 효과가 있다.
- 4) 환자들이 이 약을 투약하면 체중이 증가되는 경향이 있다.

B. 활성 매커니즘

- 1) 포도당이 결여되더라도, 췌장의 beta-cell로부터 인슐린의 분비를 자극시킨다. (by inhibiting channel and activating calcium influx) 게다가, 포도당으로부터 조절된 인슐린의 분비를 가능하게 한다.
- 2) 장기적으로 사용하면 islet cell의 증식을 자극한다
- 3) insulin inhibiting receptor의 퇴화에 의한 인슐린은 조직 민감도를 개선한다.
- 4) 바람직하지 않은 인슐린의 투여는 활성을 더욱 느리게 한다.
- 5) 간에서의 포도당 유출을 감소시킨다.
- 6) 포도당의 말초 사용효율을 증가시킨다.

C. 부작용

- 1) 저혈당 위험 (Hypoglycemic crisis)
- 2) 알레르기 피부반응 (Allergic skin reaction)
- 3) 골수의 침하 (Bone marrow depression): 백혈구 감소증 (leukopenia), 혈소판 감소증 (thrombocytopenia), 과립세포 감소증 (agranulocytosis)
- 4) barbiturates와 다른 sedative-hypnotics의 효과를 더해준다.
- 5) circulating ADH의 활성을 더해준다: ex) chlorpromide causes water retention
- 6) GI upsets
- Contraindication: renal impairment, hepatic disease

미국에서 일반적으로 이용하는 Sulfonylureas

Generic Name (이름)	Daily-Dose Range (mg) (하루 복용량)	Duration (hr) (지속시간)	Comments (설명)
First generation Chlorpropamide	100-750	>36	-Disulfiram과 비슷한 효과; 저나트륨혈증 또 는 장기의 저혈당증을 일으킬 수 있다;
			1일 1회 투여
Tolbutamide	500-3,000	6-12	- 간에서의 대사; 신부 전증 환자에게 사용하기 위한 안전한
Acetohexamide	250-1,500	12-18	sulfonylurea.
			- 대사산물 활성을 위한
Tolazamide	100-1,000	12-24	간에서의 대사
Second generation Glyburide Glybenclamide Gliclazide	2.5-20	18-24	 저혈당 발달 환자들에게 1일 1~2회 투여하지않으면; 보다 적은 부작용과 약물 상호작용을 가져온다 1일 1~2회 투여
Glipizide	5-40	12-18	

Meglitinide: 메글리티나이드 (인슐린 분비 촉진제)

<Repaglinide, Nateglinide : 경구 혈당 강하제>

- 약리적 활성
- <u>Sulfonylurea과 유사함</u>
- 경구 또는 비경구로 저혈당 수준에서 준다.
- 췌장 기능이 존재 할때만 효과가 있다.
- 활성 매커니즘
- 췌장 β-cells 에서 Closing ATP-dependent potassium channel

• 약물 동력학:

- 경구투여
- 반감기는 대략 한시간
- repaglinide의 작은 비율 (약 10~15%)은 신장에 의해 대사된다.
- Nateglinide은 주로 간에 의해 대사되고, 약의 16%는 신장에 의해 변하지 않는 형태로 분비된다.
- 금기 : 신장 장애, 간장 질병

Biguanide: 비구아니드 (인슐린 감각제)

- 1) β-cells의 기능이 요구되지 않는다.
- 2) 대체로 간에서 gluconeogenesis를 감소시킨다.
- 3) sulphonylurea 약물과 결합할 수 있다.

Biguanide	$H_{2}N - C C - R$ $H_{1}N - R$ $H_{2}N + R$ $H_{2}N + R$	Daily Dose (1일 투약량)	Duration of Action (hours) (활성 지속시간)
Phenformin (DBI, Meltrol-50)	$- NH - (CH_2)_2 - $	0.025-0.15g as single dose or in divided doses	4-6 8-14
Buformin	-NH-(CH ₂) ₃ -CH ₃	0.05g-0.3g in divided doses	10-12
<u>Metformin</u>	-N-(CH ₃) ₂	1-3g in divided doses	10-12

Biguanide

• 약리적 활성

- 간장에서 포도당의 산출을 감소시킨다.
- 장으로부터 포도당의 흡수를 억제한다.
- 근육과 지방세포에 의한 포도당 흡수를 증가시킨다.

• 활성 매커니즘

- cAMP dependent protein kinase의 활성에 관여한다.
- cell surface에 GLUT4의 promoting translocation에 의한 포도당 수송을 증가 시킨다.

• 약물 동력학:

- 경구 투여
- 반감기는 2~4 시간 정도
- 소변으로 변화없이 배출된다.
- Phenformin (펜포르민: 경구용 혈당 강하제): Lactic acidosis (Withdrawn from US market), FDA에 의해 유일하게 승인받아 사용되고 있는 물질

• 부작용:

- 1) 일시적인 GI 방해
- 2) Rate lactic acidosis
- 3) 저혈당증 없음, 체중 증가 없음
- 금기 : 신장 장애, 간장 질병

Thiazolinediones: 인슐린 감작성 약물

<Rosiglitazone, pioglitazone : 인슐린 분비 촉진제>

- 약리적 활성
- 인슐린 민감도 증가
- β-cell 보호
- 활성 매커니즘
- thiazolinedione receptor를 통한 transcription factor PPAR-γ 의 활성
- 최적의 인슐린 민감도를 위해 요구된 encoding enzymes과 proteins mRNAs의 증거
- 약물 동력학:
- 경구투여
- Rosiglitazone의 반갑기는 3~4 시간
- 간에서 활발하지 않은 산물로 대사
- 담즙에서 분비
- 부작용:
- 1) 분비액 억류
- 2) 체중 증가
- 3) Troglitazone을 제외한 간독성
- 금기: 간장 질병, 충혈성 심장 결핍

α -glicosidase 억제제

<Acarbose, miglitol : 포도당 흡수 억제제>

- 약리적 활성
- 단당류의 산출을 방해한다.
- 혈당 농도에서 발생이 잘 일어나지 않는다.
- 활성 매커니즘
- α-glucosidase 억제
- 약물 동력학 :
- The amount of acarbose absorbed systemically is negligible
- Miglitol의 반감기는 2시간
- 소변으로 변화없이 배출된다.
- 부작용
- 1) 탄수화물의 흡수 불량
- 2) 복부 통증, 설사, 위장에 가스가 참 (contraindication to irritable bowel syndrome)