[bookmark: _GoBack]1.6.1 Performance Analysis
1.6.1.1 Space Complexity
function to compute simple expression : program 1.12
[image: 설명: prog 1]

iterative function for sum: program 1.13

[image: 설명: Prog 1]

recursive function for sum: program 1.14

[image: 설명: Prog 1]

the space needed by each program (Reading Assignment)
a fixed part
space for the code, space for simple variables and fixed-size component variables, space for constant
a variable part
the space needed by component variables whose size is dependent on the particular problem instance,
the space needed by referenced variables(depend on instance),
the recursion stack space

the space requirement S(P) of any program P
	S(P) = c + Sp
need to determine which instance characteristics to use to measure the space requirements

Example 1.6
For program 1.12, Sp = 0

Example 1.7
For program 1.13, Ssum(n) = 0
The problem instances are characterized by n
The space needed by the function is independent of n

Example 1.8
For program 1.14, each call to rsum requires 4 words(n, a, the returned value, the returned address)
the depth of recursion = n + 1
the recursion stack space = 4(n+1)
n은 instance

1.6.1.2 Time Complexity
the time, T(P) = the sum of the compile time and the run time
the compile time : independent of the instance characteristics

tp: the run time
tp(n) = caADD(n) + csSUB(n) + cmMUL(n) + cdDIV(n) +
n denotes the instance characteristics
ca, cd denote the time needed for an addition, division, . . .
an impossible task to obtain an exact formula

count only the number of program steps
define a program step as a segment of a program (independent of the instance 		characteristics)
return a+b+b*c+ (a+b-c)/(a+b)+4.0; -> regarded as a step

the complexity of various statements
expressions: a step count of one
assignments <variable> = <expr>
have a step count equal to that of <expr>

if the size of <variable> is a function of the instance characteristics
then the step count := the size of <variable> + the step count of <expr>

iteration statements
consider the step counts only for the control part of loop statements
switch statement, if-then-else,

1st method to determine the number of steps needed by a program
introduce a new variable, count, into the program

Example 1.10
introduce a new variable count into program 1.14
trsum(n) = the increase in the value of count when program 1.17 terminates
	 trsum(0) = 2
	 trsum(n) = 2 + trsum(n-1)
referred to as recurrence relations

	float rsum(float *a, const int n)
	{
		count++;	// +1
		if (n<= 0) {
			count++;
			return 0;
		}
		else {
			count++;	// +1
			return (rsum(a, n-1) + a[n-1]); // trsum(n-1)
		}
	}
	
	Program 1.17: Program 1.14 with count statements added

	 trsum(0) = 2
	 trsum(n) = 2 + trsum(n-1) = 	 2*2+ trsum(n-2)
 = 2n + trsum(0) = 2n+2

expect the run time to grow linearly in n
the time complexity is linear

2nd method to determine the step count of a program
determine the number of steps per execution of the statement and the total number of times(frequency) each statement is executed

an important difference between the step count of a statement and its steps per execution (s/e)
the step count: not reflect the complexity of the statement

	x = sum(a, m)
1) a step count = 1
2) the total change in count
 = 1 + the change resulting from the invocation of sum: (2m+3)

[image: Prog 1]
Table 1.2: Step table for Program 1.14
line 2(a) : the if condition of line 2
line 2(b): the statement in the if clause
line 3: 1+trsum(n-1), under the s/e(steps per execution)
[image: Tab 1]
have to analyze the time complexity of the program fibonacci
should be able to solve the similar problems (recursions)

1.6.1.3 Asymptotic notation

a difficult task to determine the exact step count

two programs with a complexity of c1n2 + c2n and c3n respectively
if c1 =1, c2 = 2, c3 = 100
then c1n2 + c2n <= c3n for m<= 98
 c1n2 + c2n > c3n for n>98
the break-even point : the value of n 98

Def. of Big "oh"
f(n) = O(g(n)) iff f(n) <= cg(n) for all n, n>= n0, constant c
g(n) is an upper bound on the value of f(n) for all n
not say anything about how good this bound is
f(n) = O(n2), f(n)=O(n2.5), f(n) = O(n3)
.
Example 1.13
3n+2 = O(n) for all n>=2
10n**2+4n+2 = O(n**2) as
10n**2+4n+2 <= 11n**2
6*2n+n*n = O(2n) as
6*2n+n*n <= 7*2n for n>=4
3n+3 = O(n2) as 3n+3 <= 3n**2 for n>=2
10n**2 + 4n+2 = O(n4)

O(1): constant
O(n): linear
O(n2): quadratic, O(nlogn) is better than O(n2):
O(2n): exponential

f(n) = O(g(n))
g(n) should be small (to be informative)

Theorem 1.2:
if f(n) = amnm+ ... + a1n + a0, then f(n) = O(nm)

Def. of Omega

f(n) = (g(n)) iff f(n) >= g(n)

Example 1.14

3n+2 = (n) as 3n + 2 >= 3n for n>=1

10n**2 +4n+2 =(n**2)

3n+2 = (1)

6*2n+n2 = (n)

g(n) is only a lower bound on f(n)
g(n) should be as large a function of n as possible

Theorem 1.3:
if f(n) = amnm+ ... + a1n + a0,

 then f(n) = (nm)

Def. of Theta

f(n) =(g(n)) iff c1g(n) <= f(n) <= c2g(n)
g(n) is both an upper and lower bound on f(n)

Example 1.15

3n+2 = (n)

10n**2+4n+2 = (n**2)

3n+2 != (1)

3n+2 != (n**2)

Theorem 1.4:

if f(n) = amnm+ ... + a1n + a0, then f(n) = (nm)

determine the asymptotic complexity of each statement and then add up these complexities

[image: Tab 1]

[image: Tab 1]
line 3: 1 + trsum(n-1)

Example 1.16[Permutation generator]
assume that a is of size n
the second for loop is entered n-k times

each iteration of 2nd loop: (tperm (k+1, n-1))

tperm(k, n-1) = ((n-k) tperm (k+1, n-1))
when k < n-1

tperm(0, n-1) = (n(n!)), n>=1

1.6.1.4 Practical Complexities

complexity (n) is faster than complexity (n2) for sufficiently large n
[image: Tab 1]

[image: Fig 1]

[image: Tab 1]
the time needed by a 1-billion-steps-per-second computer to execute a program of complexity f(n) instructions

currently only the fastest computers can execute about 1 billion instructions per second

1.6.2 Perormance Measurement

need a clocking function: time(hsec) that returns in the variable hsec the current time in hundredths of a second

wish to measure the worst-case performance of the sequential search function(program 1.23)

asymptotic analysis : (n)
[image: Prog 1]
	
decide on the values of n for which the times are to be obtained
need the times for more than two values of n
may not follow the asymptotic curve for smaller values of n
may not lie exactly on the predicted curve because low-order terms are discarded

determine, for each of the above values of n, the data that exhibits the worst-case behavior

exhibit worst-case behavior when x is chosen such that it is not one of the a[i]'s or set a[i] = i and x = 0
[image: Prog 1]

[image: Fig 1]
inadequate precision of clock
necessary to repeat to time a short event several times and divide the total time for the event by the number of repetitions

[image: Prog 1]
r[j]: # of times the search is to be repeated when # of elements in the array is n[j]

CHAPTER 2 ARRAYS
2.1 Abstraction Data Types and the C++ Class
중요 공부 내용
ADT 정의할 수 있는 능력
Representation
Efficiency를 위한 데이터 구조 표현
알고리즘
성능 분석

2.1.1 An Introduction to the C++ Class
the class
support the distinction between specification and implementation
hide the implementation of an ADT from its users

four components of the C++ class
a class name
data members
member functions
the set of operations that may be applied to the objects of a class
levels of program access
three levels of access to class members: public, protected, private

public data member(member function)
can be invoked from anywhere in the program

private data member(member function)
invoked from within its class, or by a friend function, or a friend class

protected data member(member function)
invoked its class, or from its subclass, or by a friend
[image: Prog 2]

2.1.2 Data Abstraction and Encapsulation in C++
data encapsulation is enforced
by declaring all data members of a class to be private (or protected)
external access to data memebers
achieved by defining member functions(public) that get and set data members

separate the specification of the operations of a class from their implementation
the specification -> program 2.1(Not yet ADT)
must be contained inside the public portion of the class definition
consists of the names of every public member function, the type of its arguments, and the type of its result
function prototype
should be a description of what the function does
achieved in C++ by using comments

place the specification of an operation in a named header file
program 2.1 (placed in Rectangle.h)
place the implementations of the functions in a source file of the same name
[image: Prog 2]

2.1.3 Declaring Class Objects and Invoking Member Functions
declare class objects(instance objects) as variables
invoke members of an object by using the component selection operators, a dot(.) and an arrow(->)
[image: Prog 2]

2.1.4 Special Class Operations
constructor
a member function which initializes data members of an object
automatically executed when an object of that class is created

if not define a constructor for a class
allocate memory for the data members of a class object
not initialize the data members
the advantage of defining constructors for a class
eliminate errors that result from accessing an undefined object
all class objects are well-defined as soon as they are created

must be declared as a public member function of its class
[image: Prog 2]

	Rectangle r(1, 3, 6, 6);
	Rectangle *s = new Rectangle (0, 0, 3, 4);

	Rectangle t;
undefined object
result in compile time error
the compiler requires a default constructor to initialize t
why: operator signature에 의한 binding
if not define a constructor
the compiler generate its default constructor
if users define a constructor, then user's responsibility to provide a default constructor for Rectangle t
[image: Prog 2]

program 2.4와의 차이
body empty
use member initialization list

initialize the data members by using a member initialization list

destructor
a member function which deletes data members before the object disappears
automatically invoked when a class object goes out of scope or a class object is deleted
must be declared as a public member of its class
if a destructor is not defined for a class, then free memory associated with data members of the class for deleting an object of the class
if a data member is a pointer to some other object, then the object that it was pointing to is not deleted

operator overloading
allow the user to overload operators for user-defined data types
done by providing a definition that implements the operator for the particular data type
defined in the form of a class member function or an ordinary function
[image: Prog 2]
the C++ keyword this
represent a pointer to the particular class object that invoked it, when used inside a member function of a class

본 강의 자료의 그림 및 알고리즘 발췌
저자 : HOROWITZ
타이틀 : FUNDAMENTALS OF DATA STRUCTURES IN C++ 2nd Edition (2006)
공저 : SAHNI, MEHTA
 출판사 : Silicon Press

File Structures with C++ //99년 홍봉희
image3.png
line float rsum (float *a, const int r)
[
2 if (n <= 0) return 0;

3 else return (rsum{a, n—1) + aln-11)

}

IS

Program 1.14: Recursive function for sum

image4.png
line s/e frequency total steps

n= n>0 n=0 n>0
1 0 1 1 0 0
2@ 1 1 1 1 1
20) L 1 0 1 0
3 L4250 ~1) 0 1 0 T4t pm(n—1)
4 0 1 1 0 0
Total number of steps 2 24ty —=1)

Table 1.2: Step table for Program 1.14,

image5.wmf
W

image6.wmf
Q

image7.png
line sfe frequency total steps
n=0 n>0 n=0 n>0
i 0 - - 0 B
2a) 1 1 1 i o)
20) 1 1 [} L o)
3 2+ 1 umn=1) 0 1 0 OQ2 +t,m(n—1))
4 0 - - 0 0)
Laum (1) = 2 O2 +1,um(n=1))

Table 1.

Asymptotic complexity of rsum (Program 1,14)

image8.png
log n n nlogn n n 2

0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 4096 65,536
5 32 160 1024 32,768 4,294,967,296

Table 1,7: Function values

image9.png
Figure 1.3: Plot of function values

image10.png
HKOreL 1€ | 3K OUxL1E | HIL1g | Wuizggr | suizgs] Swoo [000'000°1
K OTHLTE HKILIE PLSIT | 28spp swgg°| sto0001 | 000°001
LK 0TL1E PLSTI uwzg9r | swool sTiE0'0€1 stiooor | 00008
W egOIKTE | K OlLIE | unuzggp oas] swp RULTY stloo 000'
W01+ HrLre swpQ| swy sTigr srigg" stigp- 001
pel g Swgz'9 sz stigz stige stigo” 0
wiwg'g| P9 ITT SWog'g stiyg sty siz sty or
298] PEg9 stiorg stite stlg: srigp- stiey” og
suIy BT 4 sTigot stig sty sHg0" sTizo (174
stil 23501 stigl sy s stigo” stiig’ o1
=7 = W= | =0 [| =@/ | uBo=(uf | u=(w) S u

Jamdwo oas/nsur <01 © UO suononnsut (u) § 10y suny,

Times on a 1-billion-steps-per-second computer

Table 1.8:

image11.png
line int segsearch (int *a, const int n, const int x) 7/ a[0], -+ aln]

Pt

2 inti=nyaf0l=x;

3 while (a] = x)

4 i-—

5 return i3

6 }//end of segsearch

Program 1.23: Sequential search

image12.png
void TimeSearch() {

int ¢{1001], n[20};

for (int L5 j <= 1000; j++) // initialize @
alil=js

for (j =03 j < 10; j++) {# values of n
aljl1=10%jn[j+101=100* (j+ 1);

}

cout << " n time" <<endly

for(j = 0: j < 20; j++) {/ obtain computing times
long start, stop;
time (start) 3 // start timer
int k = seqsearch(a, n|j|, 0); // unsuccessful search
time (stop) 3 // stop timer
long runTime = stop - start ;
cout << "<<n(j]<<” " << runTime << endl;

}

cout << "Times are in hundredths of a second.” << endl 3

)

Program 1.24: Program to time Program 1.23

image13.png
n time n time
0 0 100 0
10 0 200 0
20 0 300 0
30 [400 0
40 0 500 0
30 0 600 0
60 0 700 0
70 0 800 0
80 0 900 0
90 0 1000 0

Times in hundredths of a second

Figure 1.4: Output from Program 1.24

image14.png
voud fimedsearch() {
int a{1001], #[20);
const long r[20] = {300000, 300000, 200000, 200000, 100000, 100000,
100000, 80000, 80000, 56000, 50000, 25000, 15000, 15000, 10000, 7500, 7000,
6000, 5000, 5000};

for (int = 1; j <= 1000; j++) / initialize «
alil=Js

for (j =05 j < 10; j++) {#/ values of n
n[j1=10%j;n[j+10] =100 * (j+1);
}

cout << " n totalTime runTime" << endl;

for(j = 0; j < 20; j++) {# obtain computing times

long start. stop 3

time (start); // start timer

for (long b= 13 b <=r(jl; b++)

int k = segsearch(a, n(j], 0% /f unsuccessful search

time (stop) 3 /f stop timer

long totalTime = stop — start 3

float runTime = (float) (totalTime)/(float)(r[j]} ;

cout << "<<n[j)<<" "<<fotalTime << "
}

cout << "Times are in hundredths of a second.” << endl;

}

<< runTime << endl;

Program 1.25: Timing program

image15.png
#ifndef RECTANGLE_H
#define RECTANGLE_H
1/ In the header file Rectangle.h
class Rectangle {
public: /i the following members are public
1/ The next four members are member functions
Rectangle(); I/ constructor
“Rectangle(); # destructor
int GetHeight(); // returns the height of the rectangle
int GetWidth(); /f returns the width of the rectangle
private: /I the following members are private
J/ the following members are data members
int x1, y1, b, w3
Jf (x}, y1) are the coordinates of the bottom left corner of the rectangle
11w is the width of the rectangle; & is the height of the rectangle
i
#endif

Program 2.1: Definition of the C++ class Rectangle

image16.png
/ In the source file Rectangle.C
#include "Rectangle.h”

// The prefix "Rectangle::” identifies GetHeight() and GerWidth() as member functions
/1 belonging to class Rectangle. It is required because the member functions
/1 are implemented outside their class definition

int Rectangle::GetHeight() { return hs}
int Rectangle::GetWidih() { return w;}

Program 2.2: Implementation of operations on Rectangle

image17.png
1 In a source file main.C
#include <jostream.h>
#include "Rectangle.h”

main() {
Rectangle v, 53 /f r and s are objects of class Recrangle
Rectangle *t = &s; / {is a pointer to class object s

Jf use - to access members of class objects.

1/ use —» to access members of class objects through pointers.

if (.GetHeight () * r.GetWidth () > t—>GetHeight () * t >GerWidth ())
cout << "1

else cout << "8 "3

cout << "has the greater area” << endl;

}

Program 2.3; A C++ code fragment demonstrating how Rectangle objects are declared
and member functions invoked

image18.png
Rectangle::Rectangle(int x, int y. int height, int width)
{

xl=x3yl=y;

k= height 5 w=widih;
¥

Program 2.4: Definition of a constructor for Rectangle

image19.png
Rectangle::Rectangle(int x = 0,int y = 0, int height = 0, int width = 0)
S x1 (), y L (), A Cheight), w (width)
{1

Program 2.5: Sophisticated definition of a constructor for Rectangle

image20.png
int Rectangle::operator== (const Reciangle& s)

{
if (this == &s) return 1 ;
if ((x1 =
else return 0 ;

}

Program 2.6: Overloading operator== for class Recrangle

image1.png
float abc(float o, float b, float ¢)
{

return a +b +b *¢ +(a +b—c)Aa +b)+4.0;5
} /1 end of ubc

Program 1.12: Function to compute a +b +b*¢ + (a +b—c)y(a +b)+4.0

image2.png
line tloat sum (float *a, const int n)
1y
2 float s
3 for (int i = 05 i < n; i++)
4 s+=alll;
5 return s;

S

}

Program 1,13: Tterative function for sum

