3.6 Evaluation of Expressions
3.6.1 Expressions

	X = A / B - C + D * E - A * C

to fix the order of evaluation, assign to each operator a priority

3.6.2 Postfix notation
infix notation
the operators come in-between the operands
tree에서 다시 공부하므로 철저히 학습 필요
convert the expression into a postfix notation
postfix form : call for each operator to appear after its operands
infix A*B / C -> postfix AB*C/

evaluate the postfix form by using the stack
the virtues of postfix notation that enable easy evaluation of expressions

	 infix: A / B - C + D * E - A * C
	 postfix: A B / C - D E * + A C * -

evaluating the postfix notation by using the stack
[image: prog 3]

3.6.3 Infix to postfix
an algorithm for producing postfix from infix
1) fully parenthesize the expression
2) move all operators for replacing their corresponding right parentheses
3) delete all parentheses

	infix: A / B - C + D * E - A * C
	when fully parenthesized: (((A / B) - C) + (D * E)) - (A * C))

	postfix: A B / C - D E * + A C * -

form the postfix by stacking
infix: A + B * C

	next token		stack 	output
	-------------		--------	--------
	none			 empty	none
	A				empty	A
	+				+		A
	B				+		AB

if * get placed on top of the stack or if the + gets taken off
priority of * is higher than +
stacking *

	* 				+*		AB
	C				+*		ABC

if the input expression is empty, then output all remaining operators in the stack

							ABC*+

infix: A * (B + C) * D

	next token	stack		output
	-------------	-------		----------
	none		 empty		none
	A			empty		A
	*			*			A
	(*(A
	B			*(AB
	+			*(+			AB
	C			*(+			ABC

unstack down to the corresponding left parenthesis

)			*			ABC+
	*			*			ABC+*
	D			*			ABC+*D
	done		empty		ABC+*D*
[image: fig 3]
a priority-based scheme for stacking and unstacking operators
establish two priorities for operators : isp(in-stack priority) and icp(in-coming priority)
[image: fig 3]
isp('(') = 8, icp('(') = 0, isp ('#') = 8

stacking rule : operators are taken out of the stack as long as their in-stack priority is numerically less than or equal to the in-coming priority of the new operator
[image: prog 3]

Chap 4 Linked Lists
4.1 Singly linked lists
a sequential mapping used for ordered lists
expensive insertion and deletion of arbitrary elements
require to move elements in the list either one location higher or lower

sequential representation for several ordered lists of varying sizes
waste an unused space
compute the size of the dynamically allocated list

linked representation
pointer or link
the elements no longer occur in sequential order
[image: fig 4]
to draw linked lists as an ordered sequence of nodes with links being represented by arrows
[image: fig 4]

why it is easier to make arbitrary insertions and deletions using a linked lists rather than a sequential list
[image: fig 4]

[image: fig 4]

4.2 Representing chains in C++
a set of objects를 정의하는 클래스?
object를 정의하는 class
list를 정의하는 class
4.2.1 Defining a list node in C++

class ThreeLetterNode {
private:
	char data[3];
	ThreeLetterNode *link;
};

Example 4.1: class definitions for link lists
class nodeb {
private:
	int data;
	nodeb *link;
};

class nodea {
private:
	int data1;
	char data2;
	float data3;
	nodea *linka;
	nodeb *linkb;
};
[image: fig 4]

4.2.2 Designing a list in C++
how to represent a single node in C++
Design attempt 1

ThreeLetterNode *first; // considered to be a global variable

reference the data members of the node pointed to by first
		firstdata, firstlink
		firstdata[0], firstdata[1]
[image: fig 4]

compile-time errors because private data members cannot be accessed from outside the class
Example 4.1: private representation

Design attempt2
make the data members public
do the trick
violate data encapsulation

to define public member functions GetLink(), SetLink(), GetData(), SetData()
used to indirectly access the data members
not a good solution because any function in the program can access data members of ThreeLetterNode

a good solution : only grant the functions that perform list manipulation operations: insert a node, delete a node
no other functions should have access to data members of ThreeLetterNode

Design attempt 3
need to tackle data structure design problem
to implement a singly linked list
should contain a class corresponding to the entire list data structure
this class should support member functions that perform list manipulation operations
ThreeLetterList has-a ThreeLetterNode
다항식을 정의하는 class와 유사함
class term {
friend Polynomial;
private:
float coef;
int exp;
};

class Polynomial {
...
private:
	static term termArray[MaxTerms];
};

Definition: A has-a B iff A contains B or B is a part of A
[image: fig 4]
Objects of ThreeLetterNode are declared as data members of ThreeLetterList
ThreeLetterList physically contains many objects of class ThreeLetterNode
of nodes in a linked list is not a constant
be impossible to know in advance the number of ThreeLetterNodes in ThreeLetterList
[image: fig 4]
contain only the access pointer
ThreeLetterNode objects are not physically contained inside ThreeLetterList

a solution of dilemma of how to define class ThreeLetterNode so that only list manipulation operations have access to its data members
achieved by declaring ThreeLetterList to be a friend of ThreeLetterNode
friend: member functions of ThreeLetterNode and ThreeLetterList can access the private data members of ThreeLetterNode
[image: prog 4]

4.2.3 Pointer manipulations in C++
create nodes of a type by using the C++ command new
ThreeLetterNode* y, z;
y = new nodea;
z = new nodeb;
*y, *z denote the nodes of type NodeA and NodeB
delete y; delete z;

allow pointer variables to be assigned the null pointer constant 0
permit addition of integers to pointer variables (have no logical meaning)
y++
compare two pointer variables of the same type
y == z, y != z, y !=0
Figure 4.9 Effect of Pointer assignments

4.2.4 List manipulation operations
must declare list manipulation operations as member function of the list class

class ListNode {
private:
	int data;
	ListNode *link;
};

class xxList {
public:
	// list manipulation operations
private:
		ListNode *first;
}

assume the access pointer first to be a private data member of List

Example 4.2
create a linked list with two nodes of type ListNode
[image: prog 4]

[image: fig 4]
Example 4.3, 4.4
Program 4.4, Chain::Insert50()
Program 4.5 Chain::Delete()
see the page 184: problem3,4

4.3 A Reusable Linked List Class
4.3.1 Implementing linked lists with templates
a linked list is a container class
a good candidate for implementation with templates
[image: prog 4]
List<Type> : a friend of ListNode<Type>
declare first to be a pointer to object ListNode<Type>

define an empty linked list of integers intlist
List <int> intlist;
임의의 클래스가 있을 때 template으로 정의할 수 있을 것-이것이 프로그래밍 능력임

4.3.2 Linked lists iterators(Chain Iterators)
motivate the need for iterators of a container class
1) print all integers in class C
2) obtain the max, min, mean, median of all integers in C
3) obtain the sum, product, or sum of squares of all integers in C
4) obtain all integers in C that satisfy some property P
5) obtain the integer x from C such that, for some function f, f(x) is max

an iterator
an object that is used to traverse all the elements of a container class one by one
while loop를 object로 인식하는 개념이 필요
OLE/COM, ODBC, JDBC이해에 매우 중요
the pseudo-code for traversing all elements of the container class

initialization step;
for each item in C
{
	current = current item of C;
	body;
}
postprocessing step;
적색 라인: depend on the container class
all operations of the type have to be implemented as member functions of the particular container class

to find the maximum of all elements in the container class

for (int I=0;I<n;I++)
{
current = a[I];
x = max(current,x);
 }

int x = -MAXINT;
for (ListNode<int> *ptr = first; ptr != 0; ptr = ptr->link)
{
	current = ptr->data;
	x = max(current, x);
}
return x;

The max element have to be implemented as member functions of the container class as these operations access private data members of the container class. There are some drawbacks to this approach:

1) all operations will be member functions of List<Type> if the container class is the template list class
all of its operations should be independent of the type of object to which T is instantiated
if the body: computing the sum of all objects, then do not make sense when the objects are of type Rectangles

2) It is not feasible for the class designer to predict all the operations required by a particular user of the class
He would be forced user to add that operation to the container class
list<Type>에 모든 operations을 미리 만들어 놓을 수 없음

3) have to learn how to traverse the container class, even if the added member functions are allowed

suggest that the iterative operations be moved outside the definition of List<Type>
the iterative operations
no modify the contents of the linked list
need to access private data members of List<Type> and ListNode<Type>

define a third class ListIterator<Type>
handle the details of the linked list traversal
retrieve elements stored in the list
[image: prog 4]

Program 4.9 List iterator functions
[image: prog 4]
do not require access to the private data members of List<Type> or ListNode<Type>

examine why it is better to define a third class ListIterator than to augment the List class with the private variable current and the four public member functions

page 194: exercise 4.
Not possible for multiple iterators to be defined on the same list if the iterator operations are implemented as member functions of List<Type>
Let x1,x2,…,xn be the elements of a chain. To compute the sum(i=1, n-5) (xi * xi+5)

4.3.3 Linked list operations
choose which operations to include in reusable classes
important to provide enough operations so that the class can be used in many applications
important not to include too many operations
constructors
a destructor
an assignment operator (operator =)
the test-for-equality operator (operator ==)
operators to input and output a class object (operator >>, operator <<)

see how to implement the destructor for linked lists

useful operations in reusable classes
insertions to, deletions from, and other manipulations of the linked list
attach an element to the end of a list
[image: prog 4]
invert a chain "in place"
make use of three pointers
[image: prog 4]
concatenate two chain[image: prog 4]
· 주요 학습 내용:
invert(), concatenate() 알고리즘을 기억하는 것이 중요한 것이 아니고 두개의 list가 있을 때 merge하는 메카니즘을 이해하고 이를 활용할 수 있는 능력을 가지는 것이 중요함
-> merge with two sorted lists

4.3.4 Reusing a class
illustrate how class Polynomial can be implemented by reusing the linked list class: section 4.6
some scenarios where one should not attempt to reuse a class
1) less efficient than directly implementing class
if efficiency is of paramount importance, then implement another class
use linked lists to implement stacks and queues: section 4.6 uses chains to implement stacks and queues
data structure가 다른 응용에서도 재사용되지만 매우 중요한 데이터 구조라면, 가장 효율적인 구조로 직접 구현하는 것이 바람직

2) if the operations required by the applications are complex and specialized, do not reuse an existing classes
implement equivalence classes directly
section 4.8 implements equivalence classes directly
본 강의 자료의 그림 및 알고리즘 발췌
저자 : HOROWITZ
타이틀 : FUNDAMENTALS OF DATA STRUCTURES IN C++ 2nd Edition (2006)
공저 : SAHNI, MEHTA
[bookmark: _GoBack] 출판사 : Silicon Press
image3.png
priority operator
unary minus, !
*/,%
¥, -
< <=, >=,>

NI AL W —

Figure 3.12: Priority of operators in C++

image4.png
void postfix (expression €)
/7 Output the postfix form of the infix expression e. NextToken

#/ and stack are as in function eval (Program 3,18). It is assumed that
// the last token in e is “#. Also, "#' is used at the bottom of the stack

{
Stack<token> stack; // initialize stack
tokeny
stack. Add(C#);
for (token x = NextToken(e) ; x '="# ; x = NextToken(e))
{
if (x is an operand) cout << .x;
else if (x ==")") // unstack until ("
for (y = =stack.Delete (y); y '="('; y = =stack.Delete (y)} cont << y 3
else { // x is an operator
for (y = *stack.Delete (y); isp (¥} <= icp (x) stack.Delete (v)) cont << y 5
stack.Add(y); 1/ restack the last y that was un: ked
stack. Add(x);
)
}

// end of expression; empty stack
while (!stack.IsEmpry()) cout << *stack.Delete(y) ;
}/ end of postfix

Program 3.19: Converting from infix to postfix form

image5.png
Figure 4.1: Nonsequential list representation

image6.png
first

BAT| | oA B D]

Figure 4.2: Usual way to draw a linked list

image7.png
TBAT

(b} Insert node GAT into list

Figure 4.3: Inserting a node

image8.png
first el

BAT L ICAT[]-+{EAT] | ~FAT |- £~ GAT 1= AT]

=~WATO

Figure 4.4: Delete GAT from list

image9.png
I _VJ‘

datal 55 i data
data2 N link T
data3 314 J
linka |
linkb [I
nodea nodeb

; Tltustration of the node structures nodea and nodeb

image10.png
first = data |01 first > data 1] first = data|2]

first = link

Figure 4.6: Referencing the data members of a node

image11.png
ThreeLetterd.ist

ThreelLetterNode

“onceptual relationship between ThreeLetterList and ThreeLetterNode

image12.png
ThreeLerterList

ThreeletterNode

first : ={ BAT

WAT

Figure 4.8: Actual relationship between ThreeLetterList and ThreeLerterNode

image13.png
class ThreeLetterList ; // forward declaration

class ThreeLetterNode {
friend class ThreeLerterList ;
private:
char data [3] 3
ThreeLetierNode *link 3
%

class ThreeLetterList {
public:
#/ List Manipulation operations

private:
ThreeLetterNode =first ;
b

Program 4.1: Composite classes

image14.png
void List ::Create2(}

{
first = new ListNode (10) 5 // create and initialize first node
/f create and initialize second node and place its address in first —>link
first —link = new ListNode (20) 3

}

ListNode ::ListNode(int element = 0) // 0 is the default argument
/f in constructor for ListNode

{

data = element §
link =0 ; // null pointer constant

}

Program 4.3: Creating a two-node list

image15.png
first

10

,,;,{

200

Figure 4.10: A two-node list

image16.png
template <class Type> class List ; // forward declaration

template <class Type>
class ListNode {
friend class Lisr <Type > 3
private:

Type data 5

ListNode *link 3
b

template <class Type>

class List {

public:
List () { first = 0 3}; // constructor initializing first to 0
// List manipulation operations

private:
ListNode <Type > *first 5
b

Program 4.6: Template definition of linked lists

image17.png
enum Boolean { FALSE, TRUE};
template <class Type> class List 5
template <class Type> class Listiterator ;

template <class Type> class ListNode {
friend class List <Type > ; friend class Listiterator <Type > ;
private:
Type duta ;
ListNode *link 3
1

template <class Type> class List {
friend class Listlterator <Type > 3
public:

List() {first=0;3};

// List manipulation operations

private:
ListNode <Type > *first ;
b

template <class Type> class Listiterator {
public:
Listlrerator(const List <Type >& I): list (1), current (1. firs)) {};
Boolean NotNull () 3
Boolean NextNotNull () 5
Type* First() 3
Type* Next ()3
private:
const List <Type >& list 3 // refers to an existing list
ListNode <Type >* current 3 i/ points to a node in list

b

Program 4.8: Template definition of linked lists

image18.png
int sum(const List<int>& [)
{
Listlterator<int> Ii (1) 3 // li is associated with list /
if (1i.NotNull ()) return 0 ; // empty list, return O
int retvalue = +Ii. First () 3 // get first element
while (/i NextNotNull () // make sure that next element exists
retvalue += *li.Next () ; // get it, add it to the current total
return retvalue ;

}

Program 4.10: Using iterators to compute the sum of elements

image19.png
template <class Type>
void List <Type >::Attach(Type k)

{
LisiNode <Type >+newnode = new ListNode <Type >(k) ;
if (first == 0) first = last = newnode ;
else {
last —link = newnode ;
last = newnode 3
}
}

Program 4.11: Attaching a node to the end of a list

image20.png
template <class Type>
void List <Type >::invert ()

/1 A chain x is inverted so that if x = (ay, -, a,),
/ then, after execution, x = (a,, **-, a,).
{

ListNode <Type > xp = first. g =03 [/ g trails p

while (p) {
ListNode <Tspe > *r=gq i q=p; I risails ¢
p =p—link ; // p moves to next node
g —link = r; // link ¢ to preceding node

)

first=q3

)

Program 4.12: Inverting a list

image21.png
template <class Type>
void List <Type >::Concatenate(List <Type > b)
Hthis=(a,, - .a,)and b = (b, Vb)) mon 20,
If produces the new chain 7= (@, ** . ay, by, - . by)in this.
{
if (! firsty { first = b.first ; returns}
if (b.first) {
for (ListNode <Type > *p = first 3 p —>link 5 p = p —link) 5 // no body
polink =b.first;
}
t

Program 4.13: Concatenating two chains

image1.png
void eval(expression e}
// Evaluate the postfix expression e. It is assumed that the last token {a token
/1 is either an operator, operand, or "#') in ¢ is "#. A function NextToken is
/1 used to get the next token from e. The function uses the stack stack
{
Stack<token> stack ; finitialize stack
for (roken x = NextToken (¢) 5 x '="#'3 x = NextToken (e))
if (x is an operand) stack.Add(x) /f add 10 stack
else { // operator
remove the correct number of operands for operator x from stack; perform the
operation x and store the result (if any) onto the stack;

}
}// end of eval

Program 3.18: Evalvating postfix expressions

image2.png
postfix

T\ C-DE+*+AC*—
TyDE++AC*~
ToTA+ACH—
T4ACH-

T4Ts

Figure 3.13: Postfix evaluation

