Chapter 5 TREES

5.1 Introduction

5.1.1 Terminology

· two types of genealogical charts

· pedigree

· two-way branching shows someone’s ancestors
· lineal chart

· a chart of descendants

[image: image1.png]Dusty

- ——
Brandy
|
\ - —
Brunhilde Terry Coyote Nugget
A L 1
Gill Tansey Tweed Zoe Crocus Primrose Nous Betle
(a) Pedigree
Proto Indo-European
.
Ttalic Hellenic Germanic

-
Osco-Umbrian Latin Greek North

S

West

' u] r T
Oscan Umbrian Spanish French Italian Icelandic Norwegian Swedish

(b) Lineal

T T
Low High Yiddish

Figure 5.1: Two types of genealogical charts

· tree, root, subtree, partition, disjoint set

· node, branch

· degree

· # of subtrees of a node

· leaf or terminal node

· nodes that have degree zero

· nonterminal nodes

· siblings

· children of the same parent

· degree of a tree

· the maximum of the degree of the nodes in the tree

· ancestors of a node

· all the nodes along the path from the root to that node

· level of a node

· defined by letting the root be at level one

[image: image2.png]LEVEL

Figure 5.2: A sample tree

· height or depth of a tree

· the maximum level of any node in the tree

5.1.2 Representation of trees

5.1.2.1 List representation

· represent a tree using a list

· (A(B(E(K, L), F), C(G), D(H(M), I, J)))
· (A(B,C,D))

· A는 list 이름

· B,C,D는 A의 child
[image: image3.png]tag fields not shown

Figure 5.3: List representation of the tree of Figure 5.2

· for a tree of degree k, use only nodes of a fixed size to represent tree nodes

[image: image4.png]DATA ' CHILD1 ~ CHILD2 . CHILD &

Figure 5.4: Possible node structure for a tree of degree k

5.1.2.2 Left child-right sibling representation

· every node has at most one leftmost child and at most one closest right sibling

[image: image5.png]§ata
left child right sibling_

Figure 5.5; Left child-right sibling node structure

[image: image6.png]Figure 5.6: Left child-right sibling representation of tree of Figure 5.2

5.1.2.3 Representation as a degree-two tree

· have the two children of a node

· binary trees

· left child-right child(sibling) trees

[image: image7.png]Figure 5.7:]eft child-right child tree representation of tree of Figure 5.2

[image: image8.png]tree left child-right sibling trec

binary tree

Figure 5.8: [ree representations

5.2 Binary trees

5.2.1 The abstract data type

· a binary tree

· empty tree having zero nodes
· because of set
· consist of a root and two disjoint binary tree (left subtree and right subtree)

[image: image9.png]template <class KeyType>
class BinaryTree
{
// objects: A finite set of nodes either empty or consisting of a
// oot node. left BinarvTree and right BinaryTree.
public:
BinaryTree (3;
/ creates an empty hinary tree

Boolean IsEmpty ();
/3 the binary tree is empty, return TRUE (1): else return FALSE (0)

BinarTreetBinaryTree bt |, Element <Keylype > item, BinarvTree bt 2);
// creates a binary tree whosc left subtree is b7 1. whose right subtree / is br2. and
whose root node contains ifem

BinarvTree Lehild (5
1if IsEmpty (), return error: clse return the left subtree of *this

Element <KexTvpe > Data ();
/if IsEmpty (), return error; else return the data in the root node of *this

BinaryTree Rehild ();
/i IsEmpty (0. return error:

Ise return the right subtree of *this

H

ADT 5.1: Abstract data type BinarTree

· distinctions between a binary tree and a tree
· a binary tree is a set of nodes either empty or …

· there is no tree having zero nodes

· an empty binary tree

· in a binary tree, distinguish between the order of the children; in a tree we do not

[image: image10.png]Figure 5.9: Two different binary trees

· a skewed binary tree: FIG 5.10(a)

· a complete binary tree: FIG 5.10(b)

[image: image11.png]LEVEL

[

Figure 5.10: Skewed and complete binary trees

5.2.2 Properties of binary trees

· Lemma 5.2 [Maximum number of nodes]

· 1) maximum number of nodes on level i of a binary tree: 2i-1
· 2) maximum number of nodes in a binary tree of depth k : 2k - 1

· reading the proof

· Lemma 5.3 [Relation between the number of leaf nodes and degree-2 nodes]

· n0: # of leaf nodes

· n2: # of nodes of degree 2

· n0 = n2 + 1

· Proof:

· n1 : # of nodes of degree one

· n : the total number of nodes

· n = n0 + n1 + n2 ----- (5.1)

· B: the number of branches

· n = B + 1

· every node except the root has a branch leading into it

· B = n1 + 2n2
· n = B + 1 = n1 + 2n2 + 1 ----- (5.2)

· n0 = n2 + 1 from Eq. 5.1 and 5.2

· Definition: a full binary tree of depth k is a binary tree of depth k having 2k - 1 nodes

[image: image12.png]Figure 5.11: Full binary tree of depth 4 with sequential node numbers

· Definition: a complete binary tree with n nodes and depth k iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k

5.2.3 Binary Tree Representation

5.2.3.1 Array representation

· can easily determine the locations of the parent, left child, and right child of any node

· Lemma 5.4: in a complete binary tree, for any node i

· 1) parent(i) = [i/2]

· 2) leftchild(i) = 2i

· 3) rightchild(i) = 2i + 1

[image: image13.png]tree free

(0]] -
1 A A
2 B B
[31 -l C ‘
[41 C l D
15} P E
I o
mo| - G
® | D | H
191 - [
‘ (b) Tree of Figure 5.10(b)

[16) E

(a) Tree of Figure 5.10(a)

Figure 5.12: Array representation of the binary trees of Figure 5.10

· for the skewed tree, space is wasted

5.2.3.2 Linked representation

· the general inadequacies of sequential representation

· wasteful for a skewed tree

· insertion and deletion of nodes from the middle of a tree

· the linked representation

class Tree;

class TreeNode {

friend class Tree;

private:

TreeNode *LeftChild;

char data;

TreeNode *RightChild;

};

[image: image14.png]LefiChitd | data | RighiChitd |

LeftChild RightChild

Figure 5.13: Node representations

class Tree {

public:

// tree operations

private:

TreeNode *root;

};

[image: image15.png]root root

A '
A0 A

(@) [t

Figure 5.14: Linked representation for the binary trees of Figure 5.10

5.3 Binary tree traversal and tree iterations

5.3.1 Introduction

· traverse a tree or visit each node in the tree exactly once

· the order in which the nodes are visited

· let L, V, and R stand for moving left, visiting the node, and moving right

· six traversals: LVR, LRV, VLR, VRL, RVL, RLV

· consider only that we traverse left before right

· LVR: inorder -> infix

· LRV: postorder -> postfix

· VLR: preorder -> prefix

5.3.2 Inorder traversal
[image: image16.png]

· move left until we cannot go farther, and then visit the node,
move one node to the right and continue

[image: image17.png]1 void Tree ::inorder ()

2 // Driver calls workhorse for traversal of entire tree. The driver is
3 /f declared as a public member function of Tree.

4

5 inorder(root)

6}

7 void Tree :inorder(TreeNode *CurrentNode)
8 // Workhorse traverses the subtree rooted at CurrentNode (which is a pointer 10 a node
9//in a binary tree). The workhorse is declared as a privatc member function of Tree.
10{
11 if (CurrentNode) {
12 inorder{CurrentNode —LeftChild);
13 cout << CurrentNode —data;
14 inorder (CurrentNode —RightChild y;
15}
16}

Program 5.1: Inorder traversal of a binary trec

· Tree::inorder(TreeNode *CurrentNode)

· A private member function of Tree

Not a member function of TreeNode

· 이유는? TreeNode의 public interface로 부적합

5.3.3 Preorder traversal

· visit a node, traverse left, and continue

· if we cannot continue, move right and begin again or move back

[image: image18.png]1 vaid Tree ::preorder () {

2 // Driver calls workhorse for traversal of cntire tree. The driver is

3 /1 declared as a public member function of Tree.

4 preorder(root);

5}

6 void Tree ::preorder(TreeNode *CurreniNode)

7 /{ Workhorse traverses the subtree rooted at CurrentNode (which is a pointer to a node
8§ //in a binary tree). The workhorse is declared as a private member function of Tree.
9

10 if (CurrentNode) {

11 cout << CurrentNode —datas

12 preorder (CurrentNode —LeftChild),

13 preorder (CurrentNode —RightChild);

[

15}

Program 5.2; Preorder traversal of a binary tree

5.3.4 Postorder traversal

[image: image19.png]1 void Tree ::postorder () {

2// Driver calls workhorsc for traversal of entire tree. The driver is

3 // declared as a public member function of Tree.

4 postorder (root);

5}

6 void Tree ::postorder(TreeNode *CurrentNode)

7/t Workhorse traverses the subtree rooted at CurrentNode (which is a pointer to a node
8//in a binary tree). The workhorse is declared as a private member function of Tree.
94
10 if (CurrentNode) {
11 postorder (CurrentNode —LeftChild);
12 postorder (CurrentNode —RightChild),
13 cout << CurrentNode —data;
14}
15}

Program 5.3: Postorder traversal of a binary tree

5.3.5 Iterative inorder traversal

to implement the tree traversal method without using recursion by using iterators
[image: image20.png]1 void Tree ::Nonreclnorder ()

2 // nonrecursive inorder traversal using a stack

3

4 Srack <TreeNode *> 53 /f declare and initialize stack
5 TreeNode *CurrentNode = roor;

6 while(1) {

7 while (CurrentNode} { // move down LeftChild fields
8 s.Add (CurrentNode); 1 add to stack

9 CurrentNode = CurreniNode —LeftChild;
10 }
11 if (! s.fsEmpty () { // stack is not empty
12 CurrentNode = *s.Delete (CurrentNode); /f delete from stack
13 cout << CurrentNode —data << endl;
14 CurrentNode = CurrentNode —RighiChild;
15 }
16 else break;
17 }
18}

Program 5.4: Nonrecursive inorder traversal

· define the class InorderIterator

· declared as a friend of classes TreeNode and Tree

· Tree t;

· used to represent the tree object with which the iterator will be associated

[image: image21.png]class Inorderiterator {
public:

char * Next ();

Inorderlterator(Tree tree) it (tree) { CurrentNode = t.root;};
private:

const Treed 13

Stack <TreeNode *> s3

TreeNode *CurrentNode,

h

Program 5.5: Dcfinition of inorder iterator class

[image: image22.png]char *lnorderlterator ::Next ()
{
while (CurrentNode) {
s.Add (CurrentNode);
CurrentNode = CurrentNode —LeftChild;
)
if (! s.IsEmpty ()) {
CurrentNode = xs.Delete (CurrentNode)
char& temp = CurrentNode —data;
CurrentNode = CurrentNode —RightChilds // update CurrentNode
return &temps

J

else return 0; // tree has been traversed, no more elements

}

Program 5.6: Code for obtaining the next inorder element

· program 5.4와 유사

the iterator class constructor

· initialize its Tree data member to the tree with which the iterator will be

associated

5.3.6 Level-Order Traversal

· a traversal that requires a queue

· visit the root first, then the root's left child, followed by the root's right child

[image: image23.png]void Tree ::LevelOrder ()
Traverse the binary tree in level order
{
Quene <TreeNode *> g;
TreeNode *CurrentNode = root;
while (CurreniNode) {
cout << CurrentNode —datu << endly
if (CurreniNode —LeftChild) . Add (CurreniNode > LefrChild)
if (CurreniNode - RightChitdy . Add (CrrrentNode > RightChild);
CurrentNode = *¢.Delete (CurrentNode);

}
}

Program 5.7; Level-order traversal of a binary tree

5.3.7 Traversal without a stack

· to add a parent field to each node

· can trace way back up to any root and down again

· represent binary trees as threaded binary trees

· require two bits per node

· use the LeftChild and RightChild fields to maintain the paths back to the root

5.4 Additional binary tree operations

5.4.1 Copying binary trees

· can modify the postorder traversal algorithm

[image: image24.png]/1 Copy constructor
Tree ::Tree(const Tree& s) // driver
{

root = copy (s.root);

}

TreeNode* Tree ::copy(TreeNode *orignode) /|l Workhorse
// This function returns a pointer to an exact copy of the binary tree rooted at vrignode.

t

if (orignode) {
TreeNode *temp = new TreeNode;
temp —>data = orignode —data;
temp —>LeftChild = copy (orignode —>LefiChild);
temp —RightChild = copy (orignode >RightChild);
return temp;

}

else return 0;

}

Program 5.9: Copying a binary tree

5.4.2 testing equality

· determine the equality of two binary trees

· equivalent if two binary trees have the same topology and the identical data

· topology: every branch in one tree corresponds to a branch in the second tree in the same order

[image: image25.png]// Driver- assumed to be a friend of class Tree.
int operator==(const Tree& s, const Tree& t)

{

return egual (s.root,t.roat);

}

/I Workhorse - assumed to be a friend of TreeNode.
int equal (TreeNode *a, TreeNode *b)
/1 This function returns 0 if the subtrees at 2 and b are not equivalent,
/1 Otherwise, it will return 1.
{
if (('a) && (b)) return 1; // both @ and b are 0
if (¢ && b // both ¢ and & are non-0
&& (a ->data == b—data) /] data is the same
&& equal (a —LeftChild,b —>LeftChild) /f left subtrees are the same
&& equal (a —RightChild b — RightChild)) /f right subtrees are the same
return 13
return 0;

}

Program 5.10: Binary tree equivalence

5.4.3 The satisfiability problem

· the formulas of the propositional calculus

· a variable is an expression

· if x and y are expressions, x ^ y, x | y, ~x are expressions

· can use parentheses to alter the normal order of evaluation

· x1 | (x2 ^ ~x3)

· the satisfiability problem for formulas of propositional calculus

· ask whether or not there is an assignment of values to the variables that causes the value of the expression to be true

· (x1 ^ ~x2) | (~x1 ^ x3) | ~x3

[image: image26.png]Figure 5.18: Propositional formula in a binary tree

· let (x1, x2, x3) take on all possible combinations of true and false

· check the formula for each combination

· to evaluate an expression, need to traverse its tree in postorder

· assume each node has four fields: LeftChild, data, value, RightChild

· enum Boolean {FALSE, TRUE};

· enum TypesOfData {LogicalNot, LogicalAnd, LogicalOr, LogicalTrue, LogicalFalse};

· class SatTree;

· class SatNode {

· friend class SatTree;

· private:

· SatNode *LeftChild;

· TypesOfData data;

· Boolean value;

· SatNode *RightChild;

· };

· class SatTree {

· public:

· void PostOrderEval ();

· void rootvalue() {cout<<root->value;};

· private:

· SatNode *root;

· void PostOrderEval(SatNode *);

· };

[image: image27.png]for all 2" possible truth value combinations for the n variables
{
generate the next combination;
replace the variables by their values;
evaluate the formula by traversing the tree it points to in postorder:
if (formula.rootvalue ()) { cout << combination ; return; }

}

cout << “‘no satisfiable combination’’;

Program 5.11: First version of satisfiability algorithm

[image: image28.png]void SatTree ::PostOrderkval () /f Driver

{
PostOrderEval (root);
}
void SatTrec :: PostOrderkval (SatNode *s) {f Workhorse
{
if (s) {
PostOrderEval (s - LeftChild);
PostOrderEval (s >RightChild);
switch (s —dara) {
case LogicalNot: s »value = | s >RightChild —value; break;
case LogicalAnd: s —value = s >LeftChild —value && s —RightChild —svalue;
break;
case LogicalOr: s —value = s >LeftChild —value | s - RightChild —value;
break;
case LogicalTrue: s —value = TRUE; break;
case LogicalFulse: s —value = FALSE;
}
}
}

Program 5,12; Evaiuvating a formula

5.5 Threaded binary trees

5.5.1 Threads

· there are more 0-links than actual pointers

· n + 1 0-links and 2n total links where # of nodes in n
· replace the 0-links by pointers, called threads

· 1) replace the RightChild field(value = 0) in node p by the inorder successor of p

· 2) replace the LeftChild(value = 0) at node p by the inorder predecessor of p

[image: image29.png]root

'
[

Figure 5.20: Threaded tree corresponding to Figure 5.10(b)

· distinguish between threads and normal pointers

· add two boolean fields, LeftThread and RightThread

· if t->LeftThread == TRUE, then t->LeftChild is a thread

[image: image30.png]class ThreadedNode {
friend class ThreadedTree;
friend class Threadedinorderiterator;
private:
Boolean LefiThread;
ThreadedNode *LeftChild;
char data;
ThreadedNode *RightChild;
Boolean RightThread;

h

class ThreadedTree {
friend class Threadedinorderiterator;
public:

// Tree manipulation operations follow

private:
ThreadedNode *root;
h

class Threadedinorderlterator {
public:

char *Next ();

Threadedinorderlterator(ThreadedTree tree): t(tree) { CurrentNode = t.root;};
private:

ThreadedTree t;

ThreadedNode *CurrentNode;

k

Program 5.13: Class definition for threaded binary trees

assume a head node for all threaded binary trees

· the original tree is the left subtree of the head node

[image: image31.png]LeftThread 1efiChild data RighiChild Rzgh ‘hread

" TRUE ‘ FALSE |
4 - - 4

Figure 5.21: An empty threaded binary tree

[image: image32.png]root

f=FALSE:; t = TRUE

Figure 5.22: Memory representation of threaded tree

5.5.2 Inorder traversal of a threaded binary tree

· if x->RightThread == TRUE, then the inorder successor of x is x->RightChild

· if x->RightThread == FALSE, then the inorder successor of x is obtained by following a path of left-child links from the right child of x until a node with LeftThread == TRUE

[image: image33.png]char* Threadedinorderiterator::Next ()
// Find the inorder successor of CurrentNode in a threaded binary tree
(

ThreadedNode *temp = CurrentNode —RightChild;

if (! CurrentNode —RightThread)

while (1 temp —>LeftThread) temp = temp —LeftChild;

CurrentNode = temp;

if (CurrentNode == t.root) return 0;

else return &CurrentNode —daray

}

Program 5.14: Finding the inorder successos in a threaded binary tree

[image: image34.png]void Threadedinorderlterator :inorder ()

{
for (char *ch = Next (); ch ch = Next ())
cout << *cft << endl;

}

Program 5.15: Inorder traversal of threaded binary tree

5.5.3 Inserting a node into a threaded binary tree

· how to make insertions into a threaded tree

the case of inserting r as the right child of a node s

· if s has an empty right subtree, then a simple insertion

· if s has non-empty right subtree, then make this right subtree as the right subtree of r

[image: image35.png](b}

before

Figure 5.23: Insertion of r as a right child of s in a threaded binary tree

[image: image36.png]void ThreadedTree ::InsertRight(ThreadedNode #s, ThreadedNode r)
/ Insert r as the right child of s
€
¥ SRighiChild = s >RightChilds
rSRighiThread = s SRightThread;
r—LeftChild
r—LeftThread = TRUE; // Left Child is a thread
§ —RightChild = r; // attach rto s
s —RightThread = FALSE;
if (1 r > RightThread) {
ThreadedNode *temp = InorderSucc (r); /f returns the inorder successor of r
temp —LeftChild = r;
t
i

Program 5.16: Inserting r as the right child of s

· InorderSucc(r) : return the inorder successor of r
본 강의 자료의 그림 및 알고리즘 발췌
저자 : HOROWITZ

타이틀 : FUNDAMENTALS OF DATA STRUCTURES IN C++ 2nd Edition (2006)

공저 : SAHNI, MEHTA

 출판사 : Silicon Press
