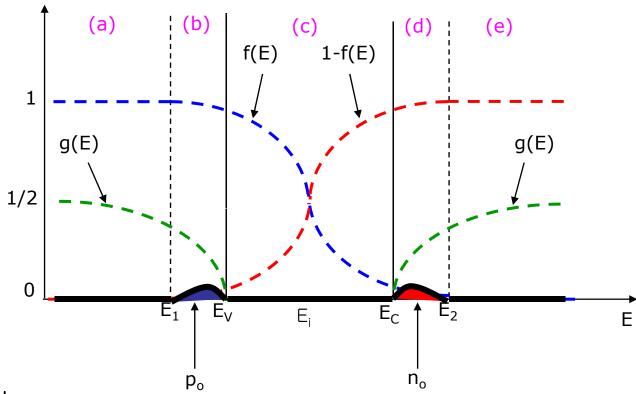


- \* 평형상태(平衡狀態, equilibrium state)
  - ▶ 어떤 물리적 시스템이 외부로부터 電界(electric field), 磁界(magnetic field), 또는 온도 등과 같은 물리적 교란을 받지 않는 상태
  - ▶ 특히, 열에 의한 교란이 없는 평형상태를 열평형상태(熱평형상태, thermal equilibrium state)라고 함
- \* 평형상태의 반도체
  - ▶ 평형상태의 반도체란 열평형상태에 있는 반도체를 의미
  - ➤ 반도체 내에서 carrier의 증가를 가져오는 현상(즉, thermal generation 등)과 carrier의 감소를 가져오는 현상(즉, recombination 등)이 같은 비율로 발생하여 종합적으로 볼 때, carrier(electron과 hole)의 개수가 일정하게 유지되고 있는 상태




#### 4.1 반도체의 전하 캐리어

#### 4.1.1 평형상태의 전자와 정공 분포

| band | energy<br>구간                        | f(E)<br>또는<br>1-f(E) | g(E)       | f(E)g(E)<br>또는<br>[1-f(E)]g(E) | 위치  | carrier  |
|------|-------------------------------------|----------------------|------------|--------------------------------|-----|----------|
| C.B. | E <sub>2</sub> < E                  | 0                    | <b>≠</b> 0 | 0                              | (e) |          |
|      | $E_C < E < E_2$                     | ≠0                   | ≠0         | <b>≠</b> 0                     | (d) | electron |
| F.B. | $E_V < E < E_C$                     | ≠0                   | 0          | 0                              | (c) |          |
| V.B. | E <sub>1</sub> < E < E <sub>V</sub> | ≠0                   | ≠0         | <b>≠</b> 0                     | (b) | hole     |
|      | E < E <sub>1</sub>                  | 0                    | ≠0         | 0                              | (a) |          |



#### ▶ 그래프적 표현



#### ▶ 수식적 표현

**C.B.** OHH 
$$n_o = \int_{E_C}^{\infty} f(E) g(E) dE$$

**V.B.** OHH 
$$p_o = \int_{-\infty}^{E_V} [1 - f(E)] g(E) dE$$



- $4.1.2 n_0$ 와  $p_0$  방정식
  - (1)  $n_0$ : conduction band 내의 electron concentration(농도)

$$n_0 = \int_{E_C}^{\infty} f(E) g(E) dE$$

-.  $N_C$  (effective density of states of electron in C.B.)

C.B.의 edge 근처에서 g(E) 함수의 효과를 electron에 관해서 등가적으로 표현한 양으로 C.B. 내에서 electron의 '유효상태밀도'라고 한다.

$$N_C = 2 \left( \frac{2\pi \, m_n^* \, kT}{h^2} \right)^{3/2}$$
 (Si, 300°K,  $N_C \approx 2.86 \times 10^{19} \, \text{cm}^{-3}$ )

-.  $N_C$ 를 이용한  $n_0$ 의 계산

$$n_0 = \int_{E_C}^{\infty} f(E)g(E)dE = f(E_C)N_C$$

$$\therefore n_0 = N_C \exp\left(\frac{E_F - E_C}{kT}\right) \quad [cm^{-3}]$$



(2)  $p_0$ : valence band 내의 hole concentration

$$p_0 = \int_{-\infty}^{E_V} [1 - f(E)] g(E) dE$$

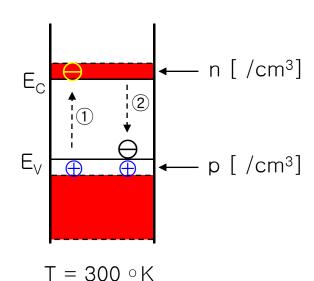
-.  $N_V$  (effective density of states of hole in V.B.)

V.B.의 edge 근처에서 g(E) 함수의 효과를 hole에 관해서 등가적으로 표현한 양으로 V.B. 내에서 hole의 '유효상태밀도'라고 한다.

$$N_V = 2 \left( \frac{2\pi \, m_p^* \, kT}{h^2} \right)^{3/2}$$
 (Si, 300°K,  $N_V \approx 1.04 \times 10^{19} \, \text{cm}^{-3}$ )

-.  $N_V$ 를 이용한  $p_0$ 의 계산

$$p_0 = \int_{-\infty}^{E_V} [1 - f(E)]g(E)dE = [1 - f(E_V)]N_V$$


$$\therefore p_0 = N_V \exp\left(\frac{E_V - E_F}{kT}\right) \quad [cm^{-3}]$$



#### 4.1.3 진성 캐리어(intrinsic carrier) 농도

➤ intrinsic conduction(진성 반도체)

불순물(impurity)이나 결정격자의 결함이 전혀 없이 완전한 결정을 이루고 있는 반도체 재료



- ① EHP의 생성(generation):  $g_i(T)$
- ② EHP의 소멸(recombination) :  $r_i(T)$

평형상태에서  $g_i = r_i$ 이므로 n, p는 일정

➤ n<sub>i</sub>: intrinsic carrier concentration(진성 캐리어 농도)

EHP는 항상 쌍으로 생성되고 쌍으로 재결합하므로 n과 p는 항상 같음

$$n_0 = p_0 = n_i$$



➤ intrinsic Fermi level(진성 페르미 준위): intrinsic 반도체의 Fermi level

$$E_{\scriptscriptstyle F}\equiv E_{\scriptscriptstyle Fi}$$
, 또는  $E_{\scriptscriptstyle i}$ 

ightarrow intrinsic carrier concentration의 계산 intrinsic semiconductor에서 항상  $E_{\scriptscriptstyle F}=E_{\scriptscriptstyle i}$  이므로

$$n_0 = N_C \exp\left(\frac{E_i - E_C}{kT}\right) = n_i \qquad p_0 = N_V \exp\left(\frac{E_V - E_i}{kT}\right) = n_i$$

$$n_0 p_0 = N_C \exp\left(\frac{E_i - E_C}{kT}\right) N_V \exp\left(\frac{E_V - E_i}{kT}\right)$$

$$= N_C N_V \exp\left(-\frac{E_g}{kT}\right)$$

$$\equiv n_i^2$$

$$\therefore n_i = \sqrt{N_C N_V} \exp\left(-\frac{E_g}{2kT}\right)$$

# Si, 300°K일 때,  $n_i \cong 1.5 \times 10^{10} cm^{-3}$  <표 4.2(p.110), 그림 4.2(p.111) 참조>



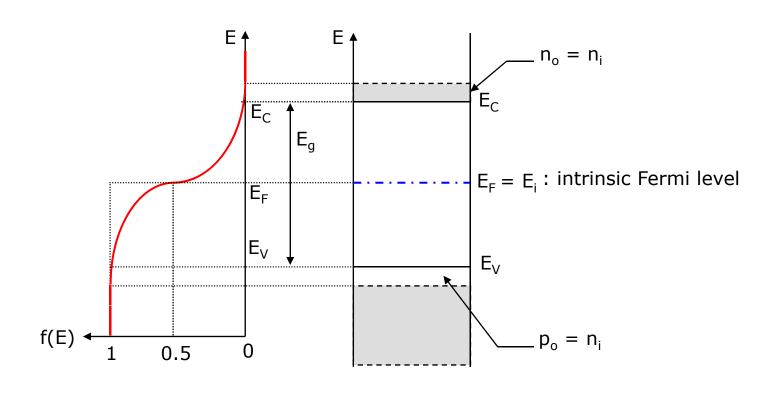
#### 4.1.4 진성 Fermi level 위치

intrinsic semiconductor의 경우, 항상  $n_0 = p_0 = n_i$  이므로

$$n_0 = N_C \exp \left[ -\frac{(E_C - E_i)}{kT} \right] = n_i, \quad p_0 = N_V \exp \left[ -\frac{(E_i - E_V)}{kT} \right] = n_i$$

에서

$$N_{c} \exp \left[ -\frac{(E_{c} - E_{i})}{kT} \right] = N_{v} \exp \left[ -\frac{(E_{i} - E_{v})}{kT} \right]$$


따라서

$$E_i = \frac{1}{2} (E_C + E_V) + \frac{1}{2} kT \ln \left( \frac{N_V}{N_C} \right)$$
$$= \frac{1}{2} (E_C + E_V) + \frac{3}{4} kT \ln \left( \frac{m_p^*}{m_n^*} \right)$$

표 4.1(p.108)를 이용하면

$$E_i \cong \frac{1}{2}(E_c + E_v)$$
 => 거의 energy gap의 중앙에 위치







- ✓ carrier 농도 표기 방식에 관한 정리
  - **(1)** *n*, *p*

```
n (electron concentration) : 반도체의 단위 cm<sup>3</sup> 당 전자의 개수 p (hole concentration) : 반도체의 단위 cm<sup>3</sup> 당 hole의 개수
```

를 나타내는 일반적인 표시이며, 그 단위는

[개/cm³], [/cm³], [개cm-³], [cm-³]

등으로 표기

(2)  $n_i$  (intrinsic carrier concentration)

intrinsic 반도체의 단위 cm³ 당 carrier(electron 또는 hole)의 개수 <예> Si,  $300\,^{\circ}K$  일 때,  $n_{i}\cong1.5\times10^{10}\,cm^{-3}$ 

(3)  $n_0$ ,  $p_0$  (equilibrium electron  $\mathfrak{L}$  hole concentration)

평형(equilibrium)상태일 때 반도체의 단위 cm³ 당 electron 또는 hole의 개수