경제수학제 8 장

편미분

편미분 (Partial Differentiation)

- The technique of partial differentiation lets us separately investigate the impact on the dependent variable as any one of the independent variables changes
- Partial derivative: measures the rate at which the dependent variable is changing as one independent variable changes, while all the other independent variables are held constant

Partial Derivatives

- For the general multivariate function y = f(w, x, z)we define three partial derivatives: $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial z}$
- The curly ∂ symbol used in the notation indicates a partial derivative
- The symbol $\frac{\partial y}{\partial w}$ is read as 'the partial derivative of *y* with respect to *w*'

Finding Partial Derivatives

- We choose one variable, say *w*, whose effect we want to investigate and differentiate with respect to it, treating all the other independent variables as if they were constants
- Similarly we can find the other partial derivatives
- Each partial derivative is obtained by temporarily holding the other independent variables constant

Values of the Partial Derivatives

- The various partial derivatives of a function are usually different from one another
- Each may contain any or all of the independent variables in the original function
- The expressions can be evaluated for any values of the independent variables to give a measure of the corresponding rate of change in the dependent variable

Small Increments Formula

• The small increments formula for small changes Δx and Δz is $\partial y = \partial y$.

$$\Delta \mathbf{y} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \Delta \mathbf{x} + \frac{\partial \mathbf{y}}{\partial \mathbf{z}} \Delta \mathbf{z}$$

- This formula gives a useful approximation for small changes in x and z
- For linear functions the formula is valid for changes of any size in the relevant variables

Multipliers

- A multiplier is:
 - change in total income divided by the initial exogenous change which caused it
 - found by obtaining an expression for equilibrium income and partially differentiating

Examples of Multipliers

- Investment multiplier = $\frac{\partial Y}{\partial I}$
- Government expenditure multiplier = $\frac{\partial Y}{\partial G}$
- Lump sum direct taxation multiplier = $\frac{\partial Y}{\partial T}$
- Tax rate multiplier = $\frac{\partial Y}{\partial t}$

Predicting the Impact of a Change

- The small increments formula lets us predict the change in Y, ΔY , resulting from another specified change
- For example, if G changes by ΔG , the change in Y is given by

$$\Delta \mathbf{Y} = \frac{\partial \mathbf{Y}}{\partial \mathbf{G}} \cdot \Delta \mathbf{G}$$

Differentials and Implicit Differentiation

• If u = f(x, y) the differentials form of the small increments formula is

$$\mathrm{d}u = \frac{\partial u}{\partial x}\mathrm{d}x + \frac{\partial u}{\partial y}\mathrm{d}y$$

• Implicit differentiation of u = f(x, y)where *u* is a constant gives

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\partial u}{\partial x} / \frac{\partial u}{\partial y}$$

Further Implicit Differentiation

• if u = f(x,y,z)

$$\mathrm{d}u = \frac{\partial u}{\partial x}\mathrm{d}x + \frac{\partial u}{\partial y}\mathrm{d}y + \frac{\partial u}{\partial z}\mathrm{d}z$$

- To find the partial derivative of any independent variable with respect to another
 - \succ set d*u* = 0
 - ➤ set the differential of the third independent variable equal to 0 and rearrange the equation

Demand Elasticities for good Y

- Own-price elasticity = $\frac{\partial Q_Y}{\partial P_Y} \cdot \frac{P_Y}{Q_Y}$ (negative unless demand is upward sloping)
- Cross price elasticity = $\frac{\partial Q_Y}{\partial P_X} \cdot \frac{P_X}{Q_Y}$

(positive for substitutes, negative for complements)

• Income elasticity of demand = $\frac{\partial Q_Y}{\partial M} \cdot \frac{M}{Q_Y}$ (positive for normal goods, negative for inferior goods)

Logarithmic Demand Functions

- When the demand function for good Y has the log linear form
- $\ln Q_y = -a b \ln P_y + c \ln P_x + h \ln M$
- The values of the own-price, cross-price and income elasticities are the coefficients of the relevant variable, namely – b, c and h

Long-run Production Functions

• For a long run production function Q = f(L,K)

MPL =
$$\frac{\partial Q}{\partial L}$$
, MPK = $\frac{\partial Q}{\partial K}$

Homogeneity and Returns to Scale

- To show the returns to scale of a production function:
- Examine how output changes when all the inputs are changed in the same proportion
- A production function which is homogeneous
 - ➢ of degree 1 has constant returns to scale
 - ➢ of degree > 1 has increasing returns to scale
 - ➢ of degree < 1 has decreasing returns to scale</p>

Euler's theorem

- Euler's theorem is a general result for homogeneous functions of degree *n*
- Euler's theorem states:

$$L \cdot \frac{\partial Q}{\partial L} + K \cdot \frac{\partial Q}{\partial K} = n \cdot Q$$

• If firms with production functions that are homogeneous of degree 1 operate in competitive factor and product markets, the total factor payments exactly exhaust the value of the output

Cobb Douglas Production Functions

- have the general form $Q = AL^{\alpha}K^{\beta}$
- are homogenous
- The parameters of the function α and β are the production elasticities of labor and capital respectively

Second Order Partial Derivatives

- Second order partial derivatives are found by partially differentiating a function twice
- We have:

$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \right)$$

$$\frac{\partial^2 y}{\partial z^2} = \frac{\partial}{\partial z} \left(\frac{\partial y}{\partial z} \right)$$

Second Order Cross Partial Derivatives

- When the second partial differentiation is with respect to a different variable from the first, cross-partial derivatives are obtained
- We have:

$$\frac{\partial^2 y}{\partial z \cdot \partial x} = \frac{\partial}{\partial z} \left(\frac{\partial y}{\partial x} \right) \quad \text{and} \quad \frac{\partial^2 y}{\partial x \cdot \partial z} = \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial z} \right)$$

• These cross partial derivatives are equal for all the functions we use in economics