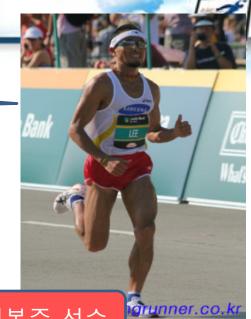

LEE CHAE SAN

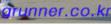
1. 근육 크기의 발달 및 유지에 영향을 미치는 요인

1-1. 근육의 분류

수의근;신경계를 통하여 대뇌피질로부터 전달되어 동작양식의 필요에 상응하여 수축, 이완


불수의근;의지와는 상관없이 자율신경계를 통하여수축, 이완

C CONTRACTOR


1-2. 근섬유의 종류와 특성

지근섬유(ST :slow twitch fiber, type l)

속근섬유(FT :fast twitch fiber, type II)

이봉주 선수

FOG :fast oxidative glycolytic , type lla)

FG :fast glycolytic , type llb)

아사파 포웰 선수

표 1. 지근과 속근의 특성

구 분	지근(type I)	속근(type II)	
		type IIa (FOG)	type IIb (FG)
수축 속도	느리다	중간 정도	빠르다
크기	작다	중간 크기	크다
색깔	검붉은색	붉은색	엷은 붉은색
미토콘드리아 모세혈관 산화효소	많다	중간	적다
피로 저항력	강하다	강하다	약하다
ATPase	낮다	높다/중간	높다

1-3. 근육의 수축 유형

등장성(동적)수축

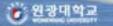
Isotonic contraction 근육의 길이 변함 단축성(동심성)

신장성(편심성)

등척성(정적)수축

Isometric contraction 근육의 길이 변하지 않음 단축성(동심성)

신장성(편심성)



등속성수축

Isokinetic contraction 각속도가 일정한 동적 수축 단축성(동심성)

신장성(편심성)

1-4. 중력의 영향

지구의 중력은?

세로운 세상을 여는 힘 POWER WONKWANG UNIVERSITY

물리적인 힘 요구

뼈, 근육 강화

우주의 무중력은?

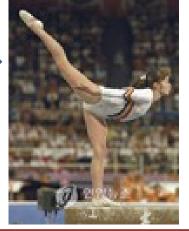
수분의 이동

뼈, 인대, 건, 연골 <u>조직, 근육의 퇴화</u>

우주인 이소연

*근육의 반사신경 쇠퇴 *근육의 협응성 실조

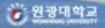
2. 신경계에 미치는 영향


- 운동신경 발달
- 뇌 중량의 증가
- 조정력 향상
- 중추신경계의 촉진, 제어, 협응력 증대
- 심장을 지배하는 교감신경의 톤은 늦추고, 부교감신경 톤을 촉진

평균대; 코마네치

평균대;아기

평균대;스자보



HORMAP REWS

이단평행봉

철봉:이고르 카시나

3. 심장 순환계에 미치는 영향

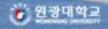

세로운 세상을 여는 힘 POWER WONKWANG UNIVERSITY

표 2. 직립자세에서 측정한 1회 심박출량 (단위:ml/beats)

구분	안정시		운동시	
성	일반인	운동선수	일반인	운동선수
남 자	70~90	100~120	110	180
여 자	50~70	70~90	90	125

운동의 효과는 동일한 운동부하시 심박수와 혈압이 적게 증가, 운동 후 정상상태로 회복속도가 빠르다.

3-1. 운동과 산소섭취량

새로운 세상을 여는 힘

표 4. 안정시와 최대운동시의 호흡기능 비교

구분	안정시	최대운동시
고 라 구	약 16회/분	약 32회/분
환기량	약 8리터/분	약 160리터/분
산소섭취량	약 0.25리터/분	약4~5리터/분
근육의 산소	혈액 중 산소의	혈액 중 산소의
필요량	약 1/4	약 3/4

최대산소섭취링

(Maximum oxygen intake; VO₂max)

Hb의 산소 함유능; O_2 1.34ml/ Hb1g Hb 15g/혈액100ml Hb 20.1ml/혈액 100ml

*폐환기량이 많을 것,
*혈액 중에 혈색소(hemoglobin:Hb)량이 충분할 것이 충분할 것
*심박출량이 많을 것
*조직에서의 산소 이용률이 클 것

3-2. 스포츠 심장sports

운동으로 강화된 심장

구분	화 변		
	심장 용적 증대		
형 태	심장 벽 두께 증가		
	심근 수축력 증대		
기능	심장의 1회 박출량 증대		
	최대 심박출량 증대		
	안정시, <u>최대하 운동시</u> 심박수 감소		

30~40km를 강도 높게 달릴 때, 120~140회/분

표 3. 숫자로 보는 이봉주 선수

인국다이(제)	4
풀 코스 완주 횟수(회)	40
분당 맥박 수(beats/min)	45
발 크기(mm)	255
허리 둘레(inch)	28

출처;중앙일보, 2009.3.23

20

러닝화 값(만원)

3-3. 세컨드 윈드 second wind

운동초기 호흡곤란 및 전신 피로감

원인: 체내 젖산 축적 (산성화) 사점 dead point

땀으로 젖산을 일시적 으로 배출

호흡이 좋아지고, 몸이 가벼워진다

표 5. 호흡곤란이 나타나기까지의 시간

질주거리	평균속도	사점까지의 거리	사점까지의 시간
400m	7.0m/sec	250m	30sec
800m	6.9m/sec	550m	80sec
1,500m	6.3m/sec	1,150m	180sec
3,000m	5.3m/sec	2,000m	380sec
5,000m	5.3m/sec	2,000m	380sec
10,000m	5.3m/sec	2,000m	380sec

Q & A

감사합니다

차시예고 제6강 유산소성 운동은 어떻게 하나?

> 이미지 출처: http://www.daum.net/ http://empas.co.kr/