

Capital Market Theory: An Overview Capital Market Theory: An Overview

Returns

- Holding-Period Returns
- **Return Statistics**

Average Stock Returns and Risk-Free Returns Risk Statistics

Returns

Dollar Returns

the sum of the cash received and the change in value of the asset, in dollars.

Returns

Dollar Return = Dividend + Change in Market Value

percentage return = $\frac{\text{dollar return}}{\text{beginning market value}}$

= dividend + change in market value beginning market value

= dividend yield + capital gains yield

Returns: Example

- Suppose you bought 100 shares of Wal-Mart (WMT) one year ago today at \$25. Over the last year, you received \$20 in dividends (= 20 cents per share \times 100 shares). At the end of the year, the stock sells for \$30. How did you do?
- Quite well. You invested \$25 × 100 = \$2,500. At the end of the year, you have stock worth \$3,000 and cash dividends of \$20. Your dollar gain was \$520 = \$20 + (\$3,000 - \$2,500).
- Your percentage gain for the year is

Returns: Example

9.2 Holding-Period Returns

The holding period return is the return that an investor would get when holding an investment over a period of *n* years, when the return during year *i* is given as *r_i*:

> holding period return = = $(1 + r_1) \times (1 + r_2) \times \cdots \times (1 + r_n) - 1$

Holding Period Return: Example

Suppose your investment provides the following returns over a four-year period:

Return	Y
10%	
-5%	
20%	=
15%	
	<i>Return</i> 10% -5% 20% 15%

Your holding period return = = $(1 + r_1) \times (1 + r_2) \times (1 + r_3) \times (1 + r_4) - 1$ = $(1.10) \times (.95) \times (1.20) \times (1.15) - 1$ = .4421 = 44.21%

Holding Period Return: Example

An investor who held this investment would have actually realized an annual return of 9.58%:

Year ReturnGeometric average return =110%2-5%320%415%
Geometric average return =
(1+r_g)⁴ = (1+r₁)×(1+r₂)×(1+r₃)×(1+r₄)
r_g = $\sqrt[4]{(1.10) \times (.95) \times (1.20) \times (1.15) - 1}$ = .095844 = 9.58%

• So, our investor made 9.58% on his money for four years, realizing a holding period return of 44.21% $1.4421 = (1.095844)^4$

Holding Period Return: Example

Note that the geometric average is not the same thing as the arithmetic average:

Year	Return
1	10%
2	-5%
3	20%
4	15%

Arithmetic average return = $\frac{r_1 + r_2 + r_3 + r_4}{4}$ $= \frac{10\% - 5\% + 20\% + 15\%}{4} = 10\%$

Holding Period Returns

- A famous set of studies dealing with the rates of returns on common stocks, bonds, and Treasury bills was conducted by Roger Ibbotson and Rex Sinquefield.
- They present year-by-year historical rates of return starting in 1926 for the following five important types of financial instruments in the United States:
 - Large-Company Common Stocks
 - Small-company Common Stocks
 - Long-Term Corporate Bonds
 - Long-Term U.S. Government Bonds

The Future Value of an Investment of \$1 in 1925

Source: © Stocks, Bonds, Bills, and Inflation 2003 Yearbook™, Ibbotson Associates, Inc., Chicago (annually updates work by Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.

Return Statistics

The history of capital market returns can be summarized by describing the

• average return

$$\overline{R} = \frac{(R_1 + \dots + R_T)}{T}$$

The standard deviation of those returns $SD = \sqrt{VAR} = \sqrt{\frac{(R_1 - R)^2 + (R_2 - R)^2 + \cdots + (R_T - R)^2}{T - 1}}$

the frequency distribution of the returns.

Historical Returns, 1926-2002

Series	Average Annual Return	Standard Deviation	Distribution
Large Company Stocks	12.2%	20.5%	
Small Company Stocks	16.9	33.2	
Long-Term Corporate Bonds	6.2	8.7	
Long-Term Government Bonds	5.8	9.4	
U.S. Treasury Bills	3.8	3.2	_j⊾
Inflation	3.1	4.4	
		L	
		- 90	1% 0% + 90%

Source: © Stocks, Bonds, Bills, and Inflation 2003 Yearbook™, Ibbotson Associates, Inc., Chicago (annually updates work by Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.

9.4 Average Stock Returns and Risk-Free Returns

- The Risk Premium is the additional return (over and above the risk-free rate) resulting from bearing risk.
- One of the most significant observations of stock market data is this long-run excess of stock return over the risk-free return.
 - The average excess return from large company common stocks for the period 1926 through 1999 was 8.4% = 12.2% - 3.8%
 - The average excess return from small company common stocks for the period 1926 through 1999 was 13.2% = 16.9% - 3.8%
 - The average excess return from long-term corporate bonds for the period 1926 through 1999 was 2.4%

Risk Premia

- Suppose that The Wall Street Journal announced that the current rate for on-year Treasury bills is 5%.
- What is the expected return on the market of smallcompany stocks?
- Recall that the average excess return from small company common stocks for the period 1926 through 1999 was 13.2%
- □ Given a risk-free rate of 5%, we have an expected return on the market of small-company stocks of 18.2% = 13.2% + 5%

The Risk-Return Tradeoff

Rates of Return 1926-2002

Source: © Stocks, Bonds, Bills, and Inflation 2000 Yearbook™, Ibbotson Associates, Inc., Chicago (annually updates work by Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.

Risk Premiums

- □ Rate of return on T-bills is essentially risk-free.
- Investing in stocks is risky, but there are compensations.
- The difference between the return on T-bills and stocks is the risk premium for investing in stocks.
- An old saying on Wall Street is "You can either sleep well or eat well."

Stock Market Volatility

Source: © Stocks, Bonds, Bills, and Inflation 2000 Yearbook™, Ibbotson Associates, Inc., Chicago (annually updates work by Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.

9.5 Risk Statistics

- □ There is no universally agreed-upon definition of risk.
- The measures of risk that we discuss are variance and standard deviation.
 - The standard deviation is the standard statistical measure of the spread of a sample, and it will be the measure we use most of this time.
 - Its interpretation is facilitated by a discussion of the normal distribution.

Normal Distribution

Normal Distribution

The 20.1-percent standard deviation we found for stock returns from 1926 through 1999 can now be interpreted in the following way: if stock returns are approximately normally distributed, the probability that a yearly return will fall within 20.1 percent of the mean of 13.3 percent will be approximately 2/3.

Normal Distribution

S&P 500 Return Frequencies

Source: © Stocks, Bonds, Bills, and Inflation 2002 Yearbook™, Ibbotson Associates, Inc., Chicago (annually updates work by Roger G. Ibbotson and Rex A. Sinquefield). All rights reserved.