

The Capital Asset Pricing Model (CAPM)

The Capital Asset Pricing Model (CAPM)

Individual Securities

- Expected Return, Variance, and Covariance
- The Return and Risk for Portfolios
- The Efficient Set for Two Assets
- The Efficient Set for Many Securities
- **Diversification:** An Example
- **Riskless Borrowing and Lending**
- Market Equilibrium
- Relationship between Risk and Expected Return (CAPM)

Individual Securities

- The characteristics of individual securities that are of interest are the:
 - Expected Return
 - Variance and Standard Deviation
 - Covariance and Correlation

		Rate d	of Return
Scenario	Probability	Stock fund	Bond fund
Recession	33.3%	-7%	17%
Normal	33.3%	12%	7%
Boom	33.3%	28%	-3%

Consider the following two risky asset world. There is a 1/3 chance of each state of the economy and the only assets are a stock fund and a bond fund.

	Stoc	k fund	Bond Fund		
Scenario	Rate of Return	Squared Deviation	Rate of Return	Squared Deviation	
Recession	-7%	3.24%	17%	1.00%	
Normal	12%	0.01%	7%	0.00%	
Boom	28%	2.89%	-3%	1.00%	
Expected return	11.00%	7.00%			
Variance	0.0205	0.0067			
Standard Deviation	14.3%	8.2%			

	Stoc	k fund	Bond Fund		
	Rate of	Squared	Rate of	Squared	
Scenario	Return	Deviation	Return	Deviation	
Recession	-7%	3.24%	17%	1.00%	
Normal	12%	0.01%	7%	0.00%	
Boom	28%	2.89%	-3%	1.00%	
Expected return	(11.00%)		7.00%		
Variance	0.0205		0.0067		
Standard Deviation	14.3%		8.2%		

 $E(r_{s}) = \frac{1}{3} \times (-7\%) + \frac{1}{3} \times (12\%) + \frac{1}{3} \times (28\%)$ $E(r_{s}) = 11\%$

	Stoc	k fund	Bond Fund		
	Rate of	Squared	Rate of	Squared	
Scenario	Return	Deviation	Return	Deviation	
Recession	-7%	3.24%	17%	1.00%	
Normal	12%	0.01%	7%	0.00%	
Boom	28%	2.89%	-3%	1.00%	
Expected return	11.00%		7.00%		
Variance	0.0205		0.0067		
Standard Deviation	14.3%		8.2%		

$$E(r_B) = \frac{1}{3} \times (17\%) + \frac{1}{3} \times (7\%) + \frac{1}{3} \times (-3\%)$$
$$E(r_B) = 7\%$$

Stoc	k fund	Bond	d Fund
Rate of Return	Squared Deviation	Rate of Return	Squared Deviation
-7%	3.24%	17%	1.00%
12%	0.01%	7%	0.00%
28%	2.89%	-3%	1.00%
11.00%		7.00%	
0.0205	0.0067		
14.3%		8.2%	
	Rate of Return -7% 12% 28% 11.00% 0.0205	ReturnDeviation-7%3.24%12%0.01%28%2.89%11.00%	Rate of Squared Rate of Return Deviation Return -7% 3.24% 17% 12% 0.01% 7% 28% 2.89% -3% 11.00% 7.00% 0.0205 0.0067

$$(11\% - -7\%)^2 = 3.24\%$$

	Stoc	k fund	Bond Fund		
	Rate of	Squared	Rate of	Squared	
Scenario	Return	Deviation	Return	Deviation	
Recession	-7%	3.24%	17%	1.00%	
Normal	12%	0.01%	7%	0.00%	
Boom	28%	2.89%	-3%	1.00%	
Expected return	11.00%	7.00%			
Variance	0.0205	0.0067			
Standard Deviation	14.3%		8.2%		

$$(11\% - 12\%)^2 = .01\%$$

	Stoc	k fund	Bond Fund		
Scenario	Rate of Return	Squared Deviation	Rate of Return	Squared Deviation	
Recession	-7%	3.24%	17%	1.00%	
Normal	12%	0.01%	7%	0.00%	
Boom	28%	2.89%	-3%	1.00%	
Expected return	11.00%		7.00%		
Variance	0.0205		0.0067		
Standard Deviation	14.3%		8.2%		

 $(11\% - 28\%)^2 = 2.89\%$

	Stoc	k fund	Bond Fund		
	Rate of	Squared	Rate of	Squared	
Scenario	Return	Deviation	Return	Deviation	
Recession	-7%	3.24%	17%	1.00%	
Normal	12%	0.01%	7%	0.00%	
Boom	28%	2.89%	-3%	1.00%	
Expected return	11 <u>.00%</u>		7.00%		
Variance	0.0205		0.0067		
Standard Deviation	1 4.3%		8.2%		

$$2.05\% = \frac{1}{3}(3.24\% + 0.01\% + 2.89\%)$$

	k fund	Bond Fund		
Rate of	Squared	Rate of	Squared	
Return	Deviation	Return	Deviation	
-7%	3.24%	17%	1.00%	
12%	0.01%	7%	0.00%	
28%	2.89%	-3%	1.00%	
11.00%	% 7.00%			
<u>0.020</u> 5	0.0067			
14.3%		8.2%		
	Return-7%12%28%11.00%0.0205	ReturnDeviation-7%3.24%12%0.01%28%2.89%11.00%	ReturnDeviationReturn-7%3.24%17%12%0.01%7%28%2.89%-3%11.00%7.00%0.0067	

 $14.3\% = \sqrt{0.0205}$

	Stoc	k fund	Bond Fund		
Scenario	Rate of Return	Squared Deviation	Rate of Return	Squared Deviation	
Recession	-7%	3.24%	17%	1.00%	
Normal	12%	0.01%	7%	0.00%	
Boom	28%	2.89%	-3%	1.00%	
Expected return	11.00%	7.00%			
Variance	0.0205	0.0067			
Standard Deviation	14.3%	8.2%			

Note that stocks have a higher expected return than bonds and higher risk. Let us turn now to the risk-return tradeoff of a portfolio that is 50% invested in bonds and 50% invested in stocks.

Rate of Return						
Scenario	Stock fund	Bond fund	Portfolio	squared deviation		
Recession	-7%	17%	5.0%	0.160%		
Normal	12%	7%	9.5%	0.003%		
Boom	28%	-3%	12.5%	0.123%		
Expected return	11.00%	7.00%	9.0%			
Variance	0.0205	0.0067	0.0010			
Standard Deviation	14.31%	8.16%	3.08%			

The rate of return on the portfolio is a weighted average of the returns on the stocks and bonds in the portfolio:

$$r_P = w_B r_B + w_S r_S$$

 $5\% = 50\% \times (-7\%) + 50\% \times (17\%)$

	Rate of Return						
Scenario	Stock fund	Bond fund	Portfolio	squared deviation			
Recession	-7%	17%	5.0%	0.160%			
Normal	12%	7%	9.5%	0.003%			
Boom	28%	-3%	12.5%	0.123%			
Expected return	11.00%	7.00%	9.0%				
Variance	0.0205	0.0067	0.0010				
Standard Deviation	14.31%	8.16%	3.08%				

The rate of return on the portfolio is a weighted average of the returns on the stocks and bonds in the portfolio:

$$r_P = w_B r_B + w_S r_S$$

 $9.5\% = 50\% \times (12\%) + 50\% \times (7\%)$

Rate of Return				
Scenario	Stock fund	Bond fund	Portfolio	squared deviation
Recession	-7%	17%	5.0%	0.160%
Normal	12%	7%	9.5%	0.003%
Boom	28%	-3%	12.5%	0.123%
Expected return	11.00%	7.00%	9.0%	
Variance	0.0205	0.0067	0.0010	
Standard Deviation	14.31%	8.16%	3.08%	

The rate of return on the portfolio is a weighted average of the returns on the stocks and bonds in the portfolio:

$$r_P = w_B r_B + w_S r_S$$

 $12.5\% = 50\% \times (28\%) + 50\% \times (-3\%)$

Rate of Return				
Scenario	Stock fund	Bond fund	Portfolio	squared deviation
Recession	-7%	17%	5.0%	0.160%
Normal	12%	7%	9.5%	0.003%
Boom	28%	-3%	12.5%	0.123%
Expected return	11.00%	7.00%	9.0%	
Variance	0.0205	0.0067	0.0010	
Standard Deviation	14.31%	8.16%	3.08%	

The *expected* rate of return on the portfolio is a weighted average of the *expected* returns on the securities in the portfolio.

$$E(r_P) = w_B E(r_B) + w_S E(r_S)$$

 $9\% = 50\% \times (11\%) + 50\% \times (7\%)$

Rate of Return				
Scenario	Stock fund	Bond fund	Portfolio	squared deviation
Recession	-7%	17%	5.0%	0.160%
Normal	12%	7%	9.5%	0.003%
Boom	28%	-3%	12.5%	0.123%
Expected return	11.00%	7.00%	9.0%	
Variance	0.0205	0.0067	(0.0010)	
Standard Deviation	14.31%	8.16%	3.08%	

The variance of the rate of return on the two risky assets portfolio is

$$\sigma_P^2 = (w_B \sigma_B)^2 + (w_S \sigma_S)^2 + 2(w_B \sigma_B)(w_S \sigma_S)\rho_{BS}$$

where ρ_{BS} is the correlation coefficient between the returns on the stock and bond funds.

Rate of Return				
Scenario	Stock fund	Bond fund	Portfolio	squared deviation
Recession	-7%	17%	5.0%	0.160%
Normal	12%	7%	9.5%	0.003%
Boom	28%	-3%	12.5%	0.123%
Expected return	11.00%	7.00%	9.0%	
Variance	0.0205	0.0067	0.0010	
Standard Deviation	14.31%	8.16%	3.08%	

Observe the decrease in risk that diversification offers.


An equally weighted portfolio (50% in stocks and 50% in bonds) has less risk than stocks or bonds held in isolation.

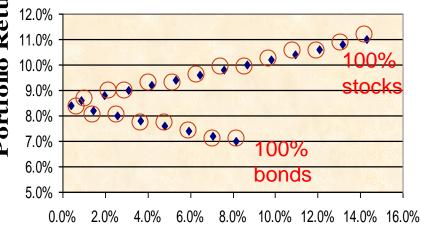
The Efficient Set for Two Assets

% in stocks	Risk	Return
0%	8.2%	7.0%
5%	7.0%	7.2%
10%	5.9%	7.4%
15%	4.8%	7.6%
20%	3.7%	7.8%
25%	2.6%	8.0%
30%	1.4%	8.2%
35%	0.4%	8.4%
40%	0.9%	8.6%
45%	2.0%	8.8%
50.00%	3.08%	9.00%
55%	4.2%	9.2%
60%	5.3%	9.4%
65%	6.4%	9.6%
70%	7.6%	9.8%
75%	8.7%	10.0%
80%	9.8%	10.2%
85%	10.9%	10.4%
90%	12.1%	10.6%
95%	13.2%	10.8%
100%	14.3%	11.0%

Portfolio Return

Portfolo Risk and Return Combinations

Portfolio Risk (standard deviation)

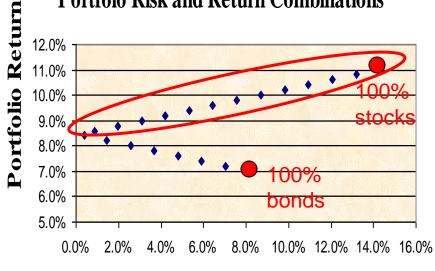

We can consider other portfolio weights besides 50% in stocks and 50% in bonds ...

The Efficient Set for Two Assets

% in stocks	Risk	Return
0%	8.2%	7.0%
5%	7.0%	7.2%
10%	5.9%	7.4%
15%	4.8%	7.6%
20%	3.7%	7.8%
25%	2.6%	8.0%
30%	1.4%	8.2%
35%	0.4%	8.4%
40%	0.9%	8.6%
45%	2.0%	8.8%
50%	3.1%	9.0%
55%	4.2%	9.2%
60%	5.3%	9.4%
65%	6.4%	9.6%
70%	7.6%	9.8%
75%	8.7%	10.0%
80%	9.8%	10.2%
85%	10.9%	10.4%
90%	12.1%	10.6%
95%	13.2%	10.8%
100%	14.3%	11.0%

Portfolio Return

Portfolo Risk and Return Combinations

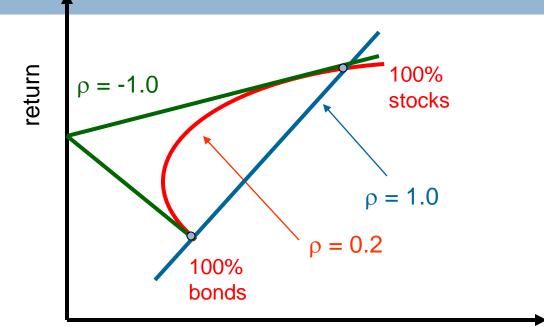

Portfolio Risk (standard deviation)

We can consider other portfolio weights besides 50% in stocks and 50% in bonds ...

The Efficient Set for Two Assets

% in stocks	Risk	Return
0%	8.2%	7.0%
5%	7.0%	7.2%
10%	5.9%	7.4%
15%	4.8%	7.6%
20%	3.7%	7.8%
25%	2.6%	8.0%
30%	1.4%	8.2%
35%	0.4%	8.4%
40%	0.9%	8.6%
45%	2.0%	8.8%
50%	3.1%	9.0%
55%	4.2%	9.2%
60%	5.3%	9.4%
65%	6.4%	9.6%
70%	7.6%	9.8%
75%	8.7%	10.0%
80%	9.8%	10.2%
85%	10.9%	10.4%
90%	12.1%	10.6%
95%	13.2%	10.8%
100%	14.3%	11.0%

Portfolo Risk and Return Combinations

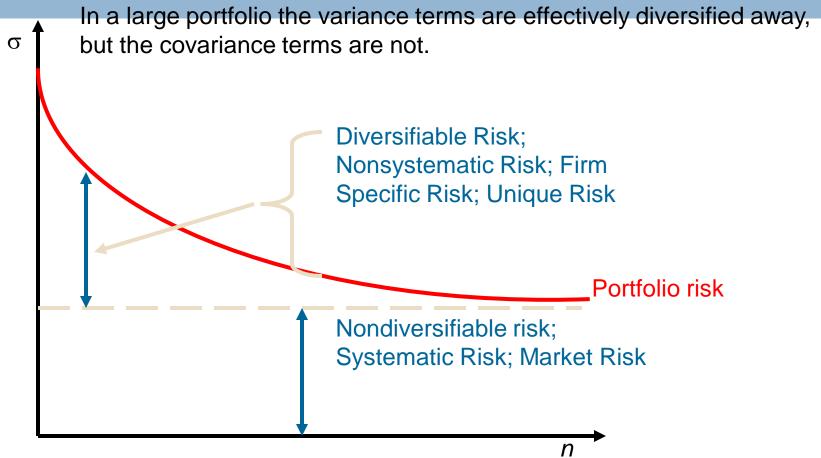


Portfolio Risk (standard deviation)

Note that some portfolios are "better" than others. They have higher returns for the same level of risk or less.

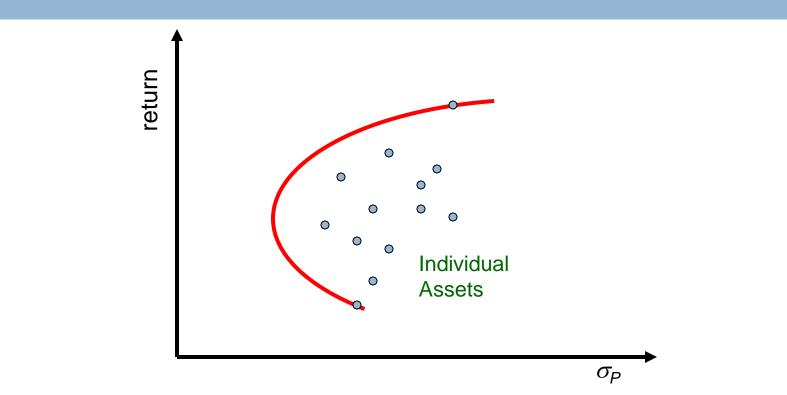
These compromise the *efficient frontier*.

Two-Security Portfolios with Various Correlations

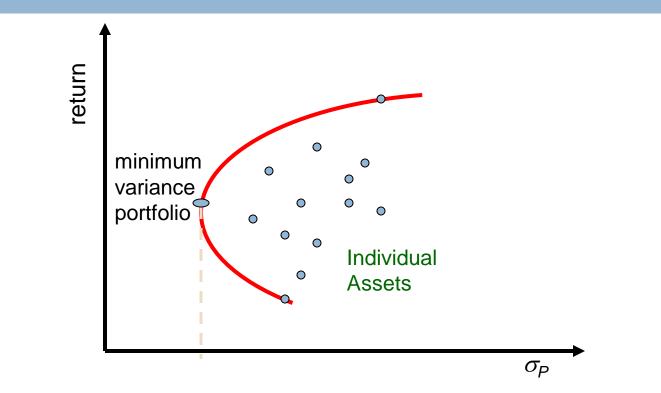

 \square Relationship depends on correlation coefficient $^{\sigma}$

$$\textbf{-1.0} \leq \rho \leq \textbf{+1.0}$$

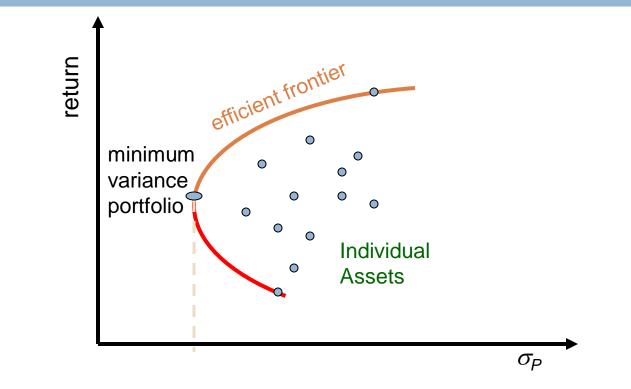
 \square If $\rho = +1.0$, no risk reduction is possible


□ If $\rho = -1.0$, complete risk reduction is possible

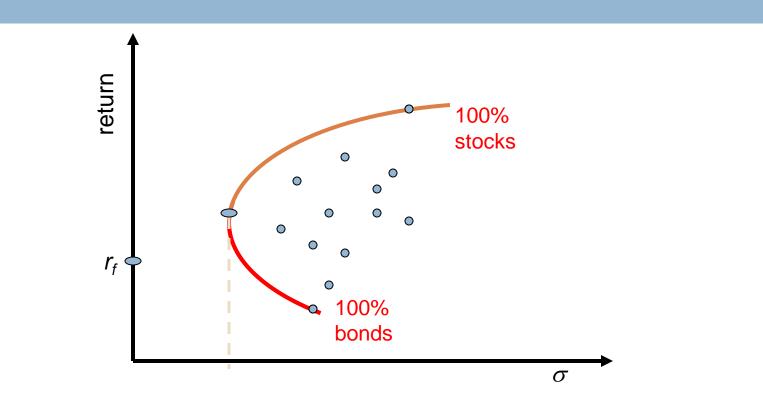
Portfolio Risk as a Function of the Number of Stocks in the Portfolio


Thus diversification can eliminate some, but not all of the risk of individual securities.

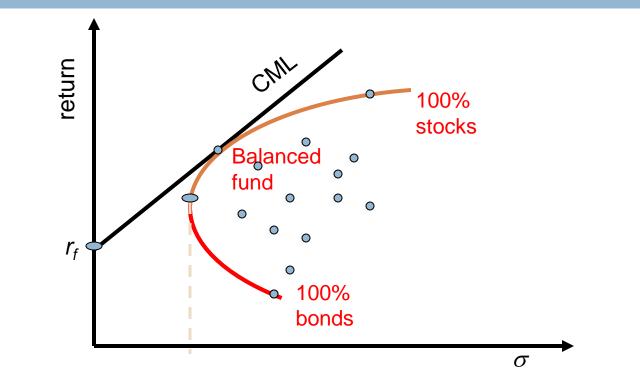
The Efficient Set for Many Securities


Consider a world with many risky assets; we can still identify the opportunity set of risk-return combinations of various portfolios.

The Efficient Set for Many Securities


Given the opportunity set we can identify the **minimum variance portfolio**.

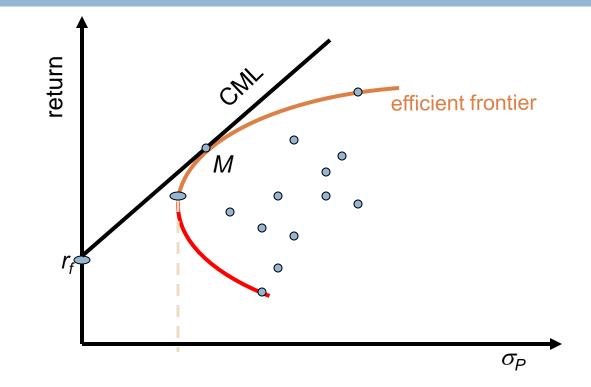
The Efficient Set for Many Securities


The section of the opportunity set above the minimum variance portfolio is the efficient frontier.

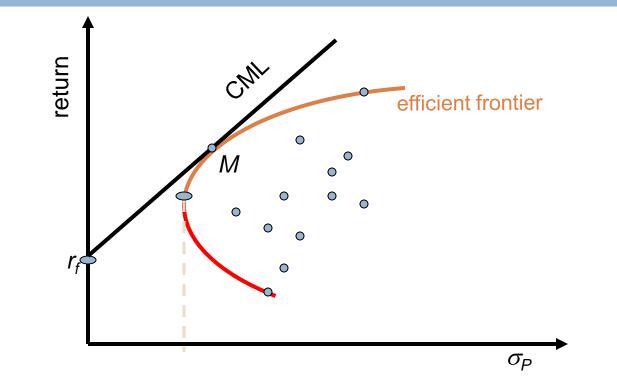
Optimal Risky Portfolio with a Risk-Free Asset


In addition to stocks and bonds, consider a world that also has risk-free securities like T-bills

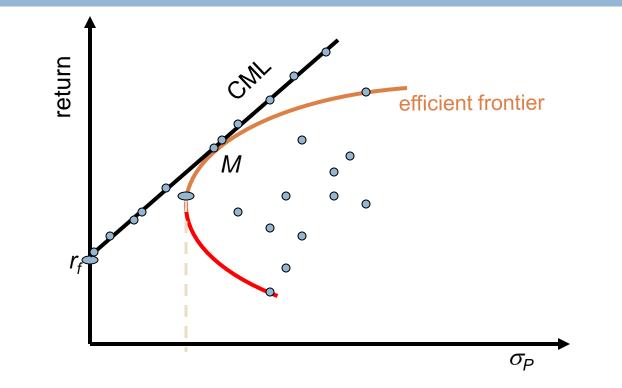
Riskless Borrowing and Lending


Now investors can allocate their money across the Tbills and a balanced mutual fund

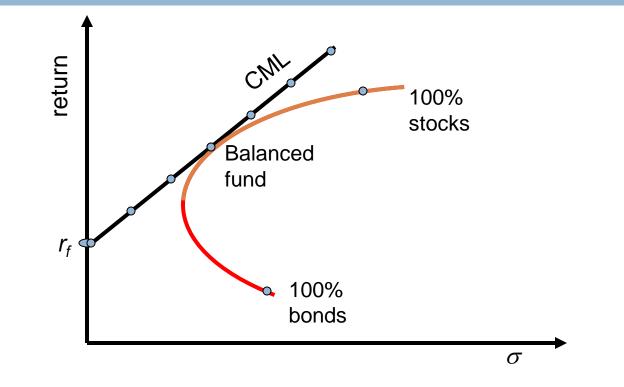
Riskless Borrowing and Lending


With a risk-free asset available and the efficient frontier identified, we choose the capital allocation line with the steepest slope

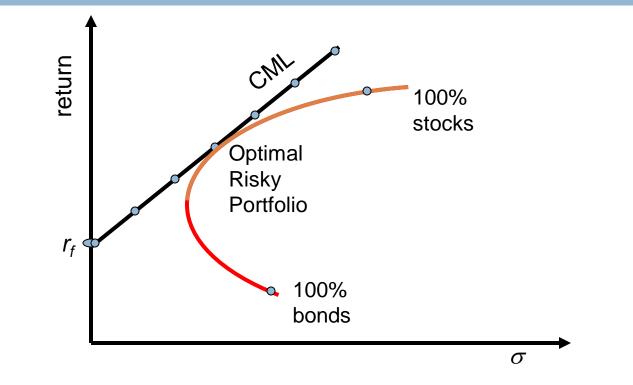
10.8 Market Equilibrium


With the capital allocation line identified, all investors choose a point along the line—some combination of the riskfree asset and the market portfolio *M*. In a world with homogeneous expectations, *M* is the same for all investors.

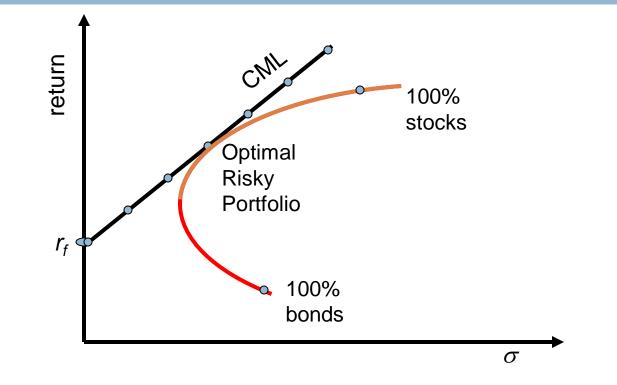
The Separation Property


The Separation Property states that the market portfolio, *M*, is the same for all investors—they can separate their risk aversion from their choice of the market portfolio.

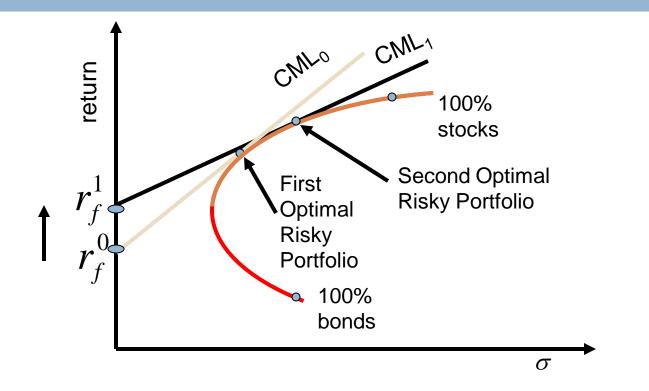
The Separation Property


Investor risk aversion is revealed in their choice of where to stay along the capital allocation line—not in their choice of the line.

Market Equilibrium


Just where the investor chooses along the Capital Asset Line depends on his risk tolerance. The big point though is that all investors have the same

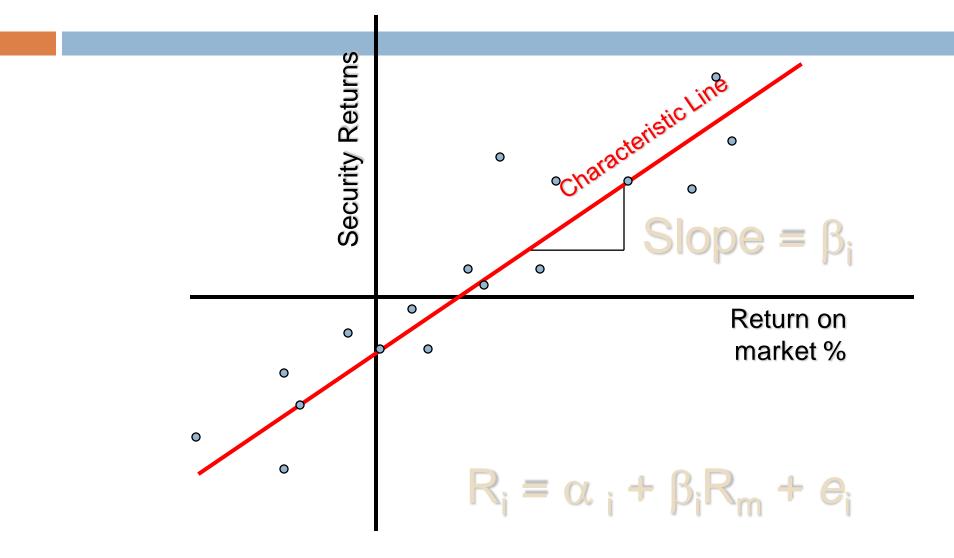
Market Equilibrium


All investors have the same CML because they all have the same optimal risky portfolio given the risk-free rate.

The Separation Property

The separation property implies that portfolio choice can be separated into two tasks: (1) determine the optimal risky portfolio, and (2)

Optimal Risky Portfolio with a Risk-Free Asset


By the way, the optimal risky portfolio depends on the risk-free rate as well as the risky assets.

Definition of Risk When Investors Hold the Market Portfolio

- Researchers have shown that the best measure of the risk of a security in a large portfolio is the beta (β)of the security.
- Beta measures the responsiveness of a security to movements in the market portfolio.

$$\beta_i = \frac{Cov(R_{i,}R_M)}{\sigma^2(R_M)}$$

Estimating β with regression

Estimates of β for Selected Stocks

Stock	Beta
Bank of America	1.55
Borland International	2.35
Travelers, Inc.	1.65
Du Pont	1.00
Kimberly-Clark Corp.	0.90
Microsoft	1.05
Green Mountain Power	0.55
Homestake Mining	0.20
Oracle, Inc.	0.49

The Formula for Beta

$$\beta_i = \frac{Cov(R_{i,}R_M)}{\sigma^2(R_M)}$$

Clearly, your estimate of beta will depend upon your choice of a proxy for the market portfolio. Relationship between Risk and Expected Return (CAPM)

Expected Return on the Market:

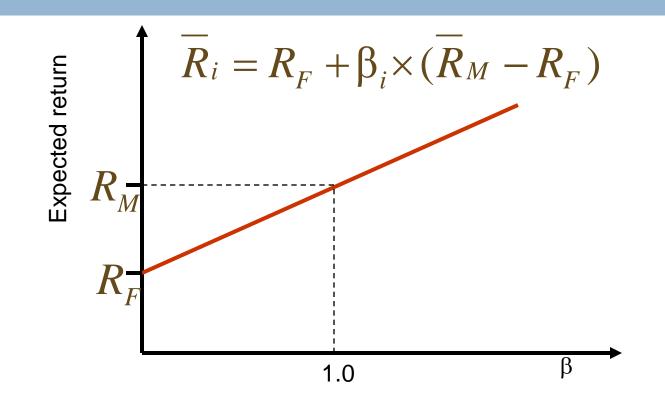
 $R_M = R_F + Market Risk Premium$

• Expected return on an individual security:

$$R_i = R_F + \beta_i \times (R_M - R_F)$$

Market Risk Premium

This applies to individual securities held within welldiversified portfolios. Expected Return on an Individual Security


This formula is called the Capital Asset Pricing Model (CAPM)

$$R_i = R_F + \beta_i \times (R_M - R_F)$$

Expected return on a security = Risk-free + Beta of the rate + security × Market risk premium

- Assume $\beta_i = 0$, then the expected return is R_{F^*} . $\overline{R}_i = \overline{R}_M$
- Assume $\beta_i = 1$, then

Relationship Between Risk & Expected Return

