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Lecture 10 – Market Structure (IV) 
 
C. Game Theory 
1. Foundations and Principles 
 1) Basic Elements of a Game 
    • Players: the identity of those playing the game, N ≥ 2  
    • Rules: the timing of all players’ move; the actions available to a player at each of her moves;  
                 the information that a player has at each move.  
    • Outcomes: It depends on what each player does when it is her turn to move. The set of  
                outcomes is determined by all of the possible combinations of actions taken by players. 
    • Payoffs: It represents the players’ preferences over the outcomes of the game. 
 
 2) Types of Games 
    • Static (strategic) games of complete information 
    • Dynamic games of complete information 
    • Static (strategic) games of incomplete information 
    • Dynamic games of incomplete information 
 
 3) Equilibrium Concepts 
    We want to focus on how to solve games. An equilibrium concept is a solution to a game. By  
    this we mean that the equilibrium concept identifies, out of the set of all possible strategies, the  
    strategies that players are actually likely to play. Solving for equilibrium is similar to making a  
    prediction about how the game will be played. The focus is on defining commonly used  
    equilibrium concepts and illustrating how to find strategies consistent with each concept. 
 
 4) Fundamental Assumptions 
    • Rationality: Players are interested in maximizing their payoffs. 
    • Common Knowledge: All players know the structure of the game and that their opponents are  
      rational, that all players know that all players know the structure of the game and that their  
      opponents are rational, and so on. 
 
   Static Games of Complete Information  
   “Static” means that players have a single move and that when a player moves, she does not  
   know the action taken by her rivals. This may be because players move simultaneously. 
   “Complete information” means that players know the payoffs of their opponents. 
  
 5) Normal Form Representation 
    • A set of players, identified by number: { }I , 2, 1, L  

 • A set of actions or strategies for each player i , denoted Si . This is the “list” of permissible  
      actions player i can take. 
    • A payoff function for each player i , π i s( ) , where s s s sI= ( )1 2,  ,  ,  L and s Si i∈ (strategy  
      vector). 
    • In addition, the descriptions of some games require delineation of who knows what, when,  
      and order of play, etc. 
 
2. One Shot Game 
  If a game is played only once and the players move simultaneously or at least no player knows  
  any of the other players’ moves before choosing his. Thus we fully characterize a one-shot  

game by a list of the available strategies and payoffs { }IISSK ππ ,,;,, 11 LL=  
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 1) Strategic Form 
    It is called the strategic (or normal) form representation of a game. For starters, let’s consider  
    the strategic form of a one-shot game with only two players, A and B, each with two strategies,  
    1 and 2. (The players could be two firms, an employer and employee, a parent and child, etc.)  
    The payoffs for each player are collected in the following two matrices. 
 
 
 
 
 
 
 
    These are combined into a single game matrix:          

  Player B 
 1 2 

1 π A
11 ,π B

11  π A
12 ,π B

12   
Player A 

2 π A
21 , π B

21  π A
22 ,π B

22  
 
    ,which fully summarizes the strategic form of the game. The game matrix is useful for  
    depicting the strategic form of games with few players (usually two or three) and a finite  
    number of strategies. 
 
    A game is symmetric if π πA

jk
B

kj= for all j and k. If π πA
jk

B
kj c+ = , where c is a constant, for  

    each pair of strategies (j, k), then the game is constant sum; if c = 0, then it is a zero-sum game.  
    Most generally, games are variable sum. 
 
    We are looking for a solution to such games. If each player is rational, what is her optimal  
    strategy? This is given by the best response function. Player i’s best response to other player’s  
    strategies is the solution to the following maximization problem: 

max ( , ),S i i i i I
i

s s s s sπ 1 1 1L L,  ,  ,  ,  − +               (i) 

    given the strategies of the ( )I −1  other players. So the best response function is s R si i i= ( ) ,  
    which can also be expressed as R s s s si i i I( )1 1 1,  ,  ,  ,  ,  L L− + ; that is, i’s best strategy is  
    generally a function of the strategies of all other players. 
 
    If each player plays her optimal strategy, what happens? That is, what is the equilibrium of  
    such a game? 
 
 2) Eliminating Dominated Strategies 
    One feature of best response functions is that they never reflect dominated strategies. For  

    player i, strategy si
′ dominates strategy si

′′ if the payoff to si
′ exceeds the payoff to si

′′ for every  
    combination of other players’ strategies si ; that is, if  

π πi i i i i is s s s( , ) ( , )′ > ′′              (ii) 

    for all si . Rational players never play dominated strategies si
′′ , so we can frequently eliminate  

    some strategies as candidates for solutions.  
 
 

  Player B  Player B 
 1 2 1 2 

1 π A
11  π A

12  1 π B
11  π B

12   
Player A 

2 π A
21  π A

22  

  
Player A

2 π B
21  π B

22  
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 3) Pigs in a Box 
    To see how this works, consider a game played by two pigs, one weak and the other strong.  
    The pigs’ strategies are simple: either Push a lever that distributes 100 calories of feed down a  
    shoot about 20 feet away or Wait at the end of the feed shoot. Waiting burns no calories, but  
    rushing from the lever to the shoot burns 10 calories. If both pigs wait, the lever is not pushed,  
    so neither gets any feed. If the strong pig pushes the lever, he gets some of the feed by chasing  
    the weak pig away; however, the weak pig cannot push the strong one aside, so the weak pig  
    would get nothing by pushing the lever. Consequently, the caloric payoffs are given in the  
    following game matrix:   
 

 
    What is the solution to this game? We begin by searching for dominated strategies to eliminate.  
    Begin with the strong pig’s best response: if the weak pig waits, the strong pig does better by  
    pushing the lever; but if the weak pig pushes the lever, the strong pig’s best response is to wait.  
    So neither of the strong pig’s strategies dominates the other. However, for the weak pig,  
    waiting dominates pushing: 75 > - 10 and 0 > - 10. So we eliminate the weak pig’s push  
    strategy: it’s dominated. Since only one strategy remains for the weak pig, that strategy is its  
    dominant strategy. A strategy is dominant if it’s the best response no matter what the other  
    players’ strategies are – that is, for every value of si . 
     
    The solution to this game is a dominant strategy equilibrium. It is determined by eliminating all  
    the dominated strategies. If what’s left is unique, we have the equilibrium. Here waiting is the  
    weak pig’s dominant strategy. Given that the weak pig waits, the strong pig’s best response is  
    to push. Hence the equilibrium is the pair of strategies (Wait, Push) with associated payoffs (75,  
    15); that is, it’s lower-left element of the game matrix. Only the weak survive! 
 
 4) Prisoners’ Dilemma 
     
 
 
 
 
 
    This game is symmetric. Although the pair would be best off by both Denying guilt, Confess is  
    a dominant strategy for each. Therefore, the dominant strategy equilibrium is the upper-left  
    element of the game matrix. Even if the two were innocent!  
 
 5) Cheating on the Cartel 
    Suppose Coke and Pepsi consider to charge a high price for soda. If the game matrix were 
 
 
 
 
 
 
    with payoffs in millions of dollars of profit per week, each firm has a dominant strategy of  
    cheating on the cartel by charging the low price. The dominant strategy equilibrium is the  

  Strong Pig 
 Push Wait 

Push - 10, 90 - 10, 100 
 

Weak  
Pig Wait   75, 15      0,     0 

  Clyde 
 Confess Deny 

Confess  - 3,  - 3     0, - 10  
Bonnie Deny - 10,    0 - 1, - 1 

   
 Pepsi     

 High p Low p 
High p 6, 6 2, 8  

Coke Low p 8, 2 3, 3 
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    lower-right element: the cartel falls apart despite the joint advantage of charging the high price. 
     
    With larger strategy spaces, some strategies can be dominated without leaving a dominant  
    strategy. In such cases, we eliminate dominated strategies iteratively. That is, some strategies  
    that did not appear to be dominated do appear to be dominated once other dominated  
    strategies are eliminated. That is true in the following example: 
 
 
 
 
 
 
     First, Jill does not have a dominant strategy. Her best response depends on whether Jack plays  
    (Left or Middle) or Right. Second, but would jack ever play Right? No, Middle dominates  
    Right (no matter what Jill does). So Right is a dominated strategy, and is irrelevant. Therefore,  
    we have 
 
 
  
 
 
    Third, having eliminated Jack playing Right, we now see that Jill playing Down can be  
    eliminated: for Jill, the payoff to Up exceeds the payoff to Down no matter what Jack does.  
    Since Jill’s dominant strategy is Up, the dominant strategy equilibrium to this game is the  
    upper-center element of the original game matrix.  
 
    To pull things together, our method for finding a solution to a one-shot game is first to  
    eliminate dominated strategies and second to associate the solution with any dominant strategy  
    that remains, if one exists. 
 
 6) Nash Equilibrium 
    Some games do not have a dominant strategy equilibrium. In these cases, we look for a  
    strategically stable solution – one that none of the players would choose to deviate from.  
    Strategies s s sI* ( , , )* *= 1 L are a Nash equilibrium if each strategy si

* is a best response to the  
    other strategies. That is, si

* solves 

max ( , )* * * * *

s i i i i I
i

s s s s sπ 1 1 1L L,  ,  ,  , ,  − +            (iii) 

 
    To start simply, let’s consider the following 2 2× game: 
 
 
 
 
 
  
    First, there are no dominant strategies. Second, there is a Nash equilibrium. To see this,  
    suppose Jill plays Up, so Jack’s best response is Left and Jill’s best response is Up. Each is a  
    best response to the other, so (Up, Left) is a Nash equilibrium. One can show that (Down,  
    Right) is also a Nash equilibrium. However, the other two pairs are not. 

(Please review Cournot and Bertrand Duopoly models again! Lec 08. pp. 34-38) 

   Jack     
 Left Middle Right 

Up 4, 1 3, 4 0, 1  
Jill Down 1, 3 1, 2 2, 0 

   Jack     
 Left Middle 

Up 4, 1 3, 4  
Jill Down 1, 3 1, 2 

   Jack     
 Left Right 

Up 3, 2 1, 1  
Jill Down 1, 1 2, 3 
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 7) Battle of the Sexes 
    In Jack and Jill’s 2 2× game, there are multiple Nash equilibria. Likewise, the following Battle  
    of the Sexes game has two Nash equilibria.  
 
 
 
 
 
    Fred and Ethel choose strategies simultaneously without coordination. Clearly, they like to be  
    together: going separate ways is not a Nash equilibrium. But there are two Nash equilibria:  
    both go to the boxing match or both go to the opera. Unlike Jack and Jill’s game, one Nash  
    equilibrium dominates the other. So as a refinement of Nash equilibrium, we expect Fred and  
    Ethel to go to the Opera. If multiple Nash equilibria cannot be ranked, then there’s no telling  
    what might happen. 
 
 8) Mixed Strategies 
    Must there be at least one Nash equilibrium? Yes, but we might not find it in pure strategies,  
    which is what we’ve analyzed so far. More generally, players can randomize their strategies.  
    These are called mixed strategies. Suppose we find no Nash equilibrium. We then need to  
    check best responses that take the form of a probability associated with each strategy. This is  
    best understood in the context of sports competition. 
     
    Consider a simplified version of the game played by a pitcher and a batter in baseball. The  
    pitcher has two strategies regarding the pitch he will throw: Fastball or Curve. The batter’s two  
    strategies are: Rush or Wait. If the batter guesses wrong, he’s sure to make an out; if he  
    correctly guesses curve ball, he’s sure to get a hit; if he correctly guesses fastball, however, his  
    probability of getting a hit is p. So the game matrix is:  
 
 
 
 
 
    for this zero-sum game. One can verify that there is no Nash equilibrium in pure strategies. For  
    instance, if the pitcher chose to throw a curve, the batter would wait, which implies that the  
    pitcher wouldn’t want to throw a curve. 
 
    To find the Nash equilibrium in mixed strategies, we also assume that each player is an  
    expected utility-maximizer. If the pitcher throws a fastball, his expected payoff would be  
    π πR Rp( ) ( )1 1 1− + − ⋅ , where π R is the probability the batter rushes. Similarly, if the pitcher  
    throws a curve, his expected payoff would be π R . Therefore, the pitcher’s best response  
    function is the solution to:   

max [ ( ) ( )] ( )
π

π π π π π
f

f r r f rp1 1 1− + − + −            (iv)   

    given π r . The solution to this problem is  

π r p
* =

+
1

1
              (v) 

    That is, to make the pitcher indifferent between throwing fastballs and curve balls, the batter’s  
    probability of rushing must be π r

* . 
    We must also solve the batter’s problem. The batter chooses π r to maximize his expected  

   Ethel     
 Boxing Opera 

Boxing 4, 3 1, 1  
Fred Opera 0, 0 6, 6 

  Batter     
 Rush Wait 

Fastball 1 – p, p 1, 0  
Pitcher Curve 1, 0 0, 1 
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    utility given the pitcher’s mixed strategy. The solution is: 

π f p
* =

+
1

1
              (vi) 

    If p = ½, fastballs would be thrown and anticipated two-third of the time. Notice, the better the  
    batter is at hitting an anticipated fastball, the less likely he’ll see one. What’s the batter’s  

    expected batting average? ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ p
p

1
. Do better batters have higher equilibrium batting averages?  

   (Yes, but the pitcher’s response attenuates the effect of skill on batting average.)   
 
 9) Remarks 
    Several results are worth remembering. First, all dominant strategy equilibria are Nash  
    equilibria. Second, not all Nash equilibria are dominant strategy equilibria. Third, there always  
    exists at least one Nash equilibrium, although perhaps not in pure strategies. Fourth, if there’s a  
    single Nash equilibrium, that’s our prediction. Fifth, if there exist multiple Nash equilibria,  
    eliminate Pareto-dominated Nash equilibria. 
 
3. Repeated Games 
  Suppose a one-shot game G is repeated T times. Let G T( ) denote this repeated game. This  
  expands the strategy space for each player. Player i’s strategy would be a sequence of moves,  
  one move for each round. More precisely, a player’s strategy specifies the action to be taken in  
  each stage for each possible history of play through the previous round. This introduces the  
  possibility of reputations, threats, and rewards. 
 
  The method for analyzing repeated games, as well as sequential games, is backward induction –  
  look forward and reason backward. 
 
 1) Fixed Repetitions 
    If T is fixed, how would the solution to G T( ) be related to the solution to G? Would the  
    equilibrium change? Suppose T = 2. Clearly, the solution in the second round must be the  
    solution to the one-shot game. Now step back to the first round. Each player looks forward to  
    see that the solution to the second round will be the solution to the one-shot game. That is,  
    payoffs in the second round will not depend on play in the first round. Therefore, best  
    responses in the first round are the one-shot game best responses. So, the game unravels.  
 
    Result: The solution to a repeated game with fixed repetitions is the sequence of solutions to  
                the one-shot game, if the solution to the one-shot game is unique. 
 
    This is sometimes called the end-game problem. 
    If the solution to the one-shot game is not unique, play in the first round can influence which of  
    the multiple equilibria is played in the second round.  
 
 2) Indefinite Repetitions 
    If the horizon were infinite – or the game were repeated a random number of times – the  
    repeated game would not unravel, and richer strategies might comprise the equilibrium.  
    Consider a trigger strategy: if I play Nice until you play Nasty, then I play Nasty forever. Both  
    players following a trigger strategy is a Nash equilibrium – and each would play Nice in each  
    round – but would it really be in my interest to follow through on my threat if you do play  
    Nasty? It turns out that this isn’t a problem. The Folk Theorem (Friedman 1971) guarantees  
    that a trigger strategy works in supporting a large number of outcomes as long as the players  
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    don’t discount the future too heavily. 
 
    Alternatively, I might play Tit-for-Tat: penalize your Nasty-playing opponent for only one  
    round; that is, your strategy in a round is your opponent’s strategy in the previous round.  
    Experimental evidence suggests that tit-for-tat is hard to beat. But it’s an awful strategy if  
    there’s a possibility of mistakenly accusing the other player of playing Nasty.  
 
 3) Cartel Enforcement 
    Enforcing a collusive agreement is more likely to be successful in long-term relationships. In  
    the one-shot game, as we saw above, cheating is the dominant strategy. If the cartel has a  
    known horizon, again every member cheats. Since penalties in an infinitely repeated game can  
    support the cartel equilibrium, cheating can be deterred. However, the members must not  
    discount the future too heavily; in particular, the probability that G T( ) ends can’t be too high.  
    And, of course, precise detection is assumed. 
 
4. Sequential Games 
  The games we’ve studied to this point have been simultaneous move games, or at least no player  
  knows another’s move before making his own. Now we turn to games where at least some of the  
  moves are taken in turn.  
 
 1) Extensive Form 
    A game’s extensive form specifies the players, when each player has a move, what each player  
    can do when it’s his move, what each player knows when it’s his move, and each player’s  
    payoffs for each combination of moves of all players. The key difference between strategic and  
    extensive form representations of a game is that the latter specifies the order of play. This is  
    essential in sequential games. 
 
   The game tree depicts a game’s extensive form. For instance, a game tree for the Battle of the  
   Sexes is 
        Fred : Ethel  
            B 
                                                       
 
 Boxing                                     O 
             
 
                                   Opera                                       B 
 
 
                                                                                    O 
 
 
    The game tree begins with a decision node for one player and ends with terminal nodes, which  
    list the payoffs associated with a series of strategies. In between are decision nodes for one  
    player or another. Along the branches, we specify the strategies. 
 
    If Fred and Ethel play simultaneously, we add the shaded information box to indicate that Ethel  
    does not have knowledge of Fred’s strategy before she plays. (We could have put Fred after  
    Ethel, too.) In this case, the only extra information in the game tree is that the moves are indeed  
    simultaneous. 
 

Fred 

3 : 4 

0 : 0 

1 : 1 

4 : 3 

Ethel

Ethel
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    Alternatively, if Fred moves first, we remove the information box. Here the game tree specifies  
    the order of play, but the game matrix does not: the strategic form representation suppresses the  
    order of play. To the extent order of play is important in determining the equilibrium, we must  
    use the extensive form. 
 
    As in the one-shot version of this game, there are two Nash equiliria. Order of play has no  
    effect on the Nash equilibria. However, not all Nash equilibria are sensible in sequential games.  
    To see this, let’s solve the game by backward induction. We start by solving each of Ethel’s  
    two subgames. If Fred chose Boxing, the solution to the subsequent subgame is (Boxing,  
    Boxing). If Fred chose Opera, the solution to the subsequent subgame would be (Opera, Opera).  
    Since Ethel will condition her choice on Fred’s and Fred knows this, his best response is to  
    choose Boxing. That is, he knows that Ethel will follow him, so he chooses his favorite. 
 
 2) Subgame Perfection 
    This game is subgame perfect. To be subgame perfect, the players’ strategies must constitute a  
    Nash equilibrium in every subgame – that is, forward from each decision node. Although going  
    together to the Opera is a Nash equilibrium, it is not subgame perfect. The idea here is that  
    subgame perfection throws out Nash equilibria that could be supported by only incredible  
    threats. For instance, Ethel could announce that her strategy will be Opera. If Fred believed her,  
    he would also choose Opera. But Ethel’s strategy isn’t credible. If Fred chose Boxing, it  
    wouldn’t be her best response to choose Opera. So choosing Opera in that subgame wouldn’t  
    be a Nash equilibrium, which implies going together to the Opera is not subgame perfect. 

(Review the Stackelberg Duopoly for your better understanding! Lec 08. pp.39-41) 
  
 3) Commitment 
    If Ethel could commit to go to the Opera, she would win the Battle of the Sexes. To commit,  
    she must take it her best response to go to the Opera no matter where Fred goes. That is, she  
    must reduce her options to improve her payoffs. 
     
    Suppose she posts a bond of $3 with Lucy. If she goes to the Boxing match, she forfeits the  
    bond. This changes Ethel’s payoffs. Now Opera emerges as a dominant strategy in the second  
    subgame. Her threat is credible. Fred’s best response ex ante is to go to the Opera. Ethel wins.  
    Adding the possibility of commitment would expand the strategy space (e.g., how much to pay  
    Lucy), so Fred and Ethel would be playing a different game.    


