Economics of Industrial Organization

Lecture 6: Cournot Oligopoly

꾸르노 복점 모형

- Single good produced by n firms
- Cost to firm i of producing q_i units: $C_i(q_i)$, where C_i is nonnegative and increasing
- If firms' total output is Q then market price is P(Q), where P is nonincreasing
- Profit of firm i, as a function of all the firms' outputs:

$$\pi_{i}(q_{1}, q_{2}, ..., q_{n}) = q_{i}P\left(\sum_{j=1}^{n} q_{j}\right) - C_{i}(q_{i})$$

꾸르노 복점 모형

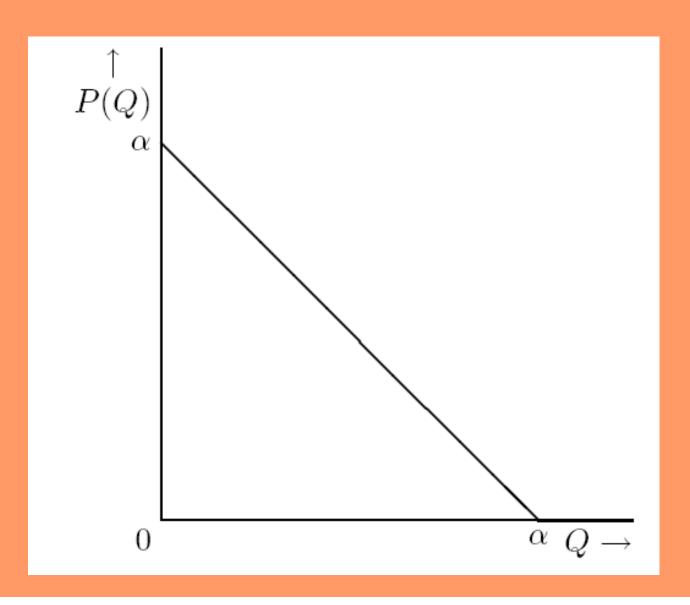
Strategic game:

- players: firms
- each firm's set of actions: set of all possible outputs
- each firm's preferences are represented by its profit

- two firms
- Inverse demand:

$$P(Q) = \max\{0, \alpha - Q\} = \begin{cases} \alpha - Q & \text{if } Q \le \alpha \\ 0 & \text{if } Q > \alpha \end{cases}$$

• constant unit cost: $C_i(q_i) = cq_i$, where $c < \alpha$



Recall for a perfectly competitive firm, P=MC, so

$$\alpha - Q = c$$
, or $Q = \alpha - c$.

Recall for a monopolist, MR=MC, so

$$\alpha - 2Q = c$$
, or $Q = (\alpha - c)/2$.

[We could verify this by using calculus to solve the profit maximization problem.]

Payoff functions

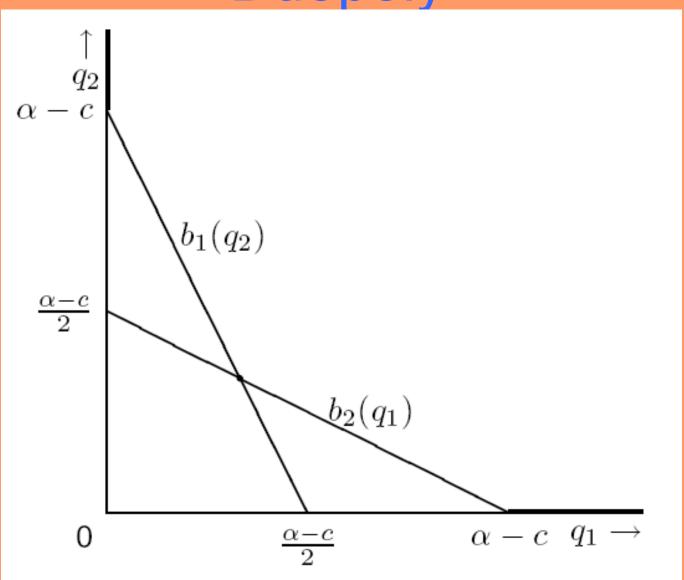
Firm 1's profit is

$$\begin{split} \pi_1(q_1,q_2) &= q_1(P(q_1+q_2)-c) \\ &= \begin{cases} q_1(\alpha-c-q_2-q_1) & \text{if } q_1 \leq \alpha-q_2 \\ -cq_1 & \text{if } q_1 > \alpha-q_2 \end{cases} \end{split}$$

Best response function is:

$$b_1(q_2) = \begin{cases} (\alpha - c - q_2)/2 & \text{if } q_2 \le \alpha - c \\ 0 & \text{if } q_2 > \alpha - c. \end{cases}$$

Same for firm 2: $b_2(q) = b_1(q)$ for all q.



Nash equilibrium:

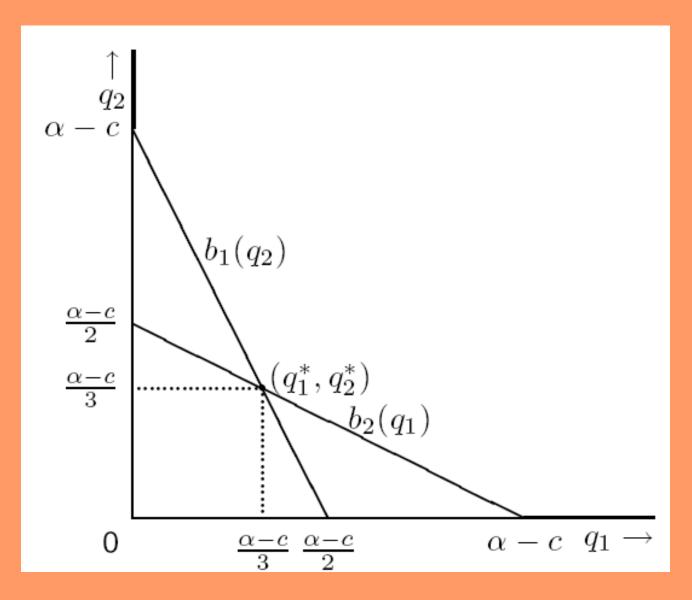
Pair (q_1^*, q_2^*) of outputs such that each firm's action is a best response to the other firm's action or

$$q_1^* = b_1(q_2^*)$$
 and $q_2^* = b_2(q_1^*)$

Solution:

$$q_1 = (\alpha - c - q_2)/2$$
 and $q_2 = (\alpha - c - q_1)/2$

$$q_1^* = q_2^* = (\alpha - c)/3$$



Conclusion:

Game has unique Nash equilibrium:

$$(q_1^*, q_2^*) = ((\alpha - c)/3, (\alpha - c)/3)$$

At equilibrium, each firm's profit is

$$\pi = ((\alpha - c)^2)/9$$

• Total output $2(\alpha - c)/3$ lies between monopoly output $(\alpha - c)/2$ and competitive output $\alpha - c$.

N-player Cournot Model (1)

- Demand function $P = \alpha Q$
- Cost function C_i(q_i) = cq_i
- n firms, i = 1,2,...,n. So $Q = q_1 + q_2 + ... + q_n$.
- Solve using a representative firm i.

$$\pi_i = q_i(\alpha - Q - c)$$
$$= q_i(\alpha - q_i - \sum q_{-i} - c)$$

FOC:
$$(\alpha - 2q_i - \sum q_{-i} - c) = 0$$

Solve for firm i's best response function:

$$q_i = (\alpha - \sum q_{-i} - c)/2$$

This gives n linear equations which we could solve simultaneously (for i = 1, 2,, n)

N-player Cournot Model (2)

- Instead, we will impose symmetry.
- It should be clear from the symmetric nature of the problem and the best response functions that the solution will be symmetric i.e. q₁ = q₂ = ... = q_n. We could see for example that simultaneously solving the best response functions for q₁ and q₂ will imply that q₁ = q₂, and we could repeat this for all other pairs of equation.
- Thus, we can impose $q_i = q^*$ for all i on our representative firm best response function.
- This implies

$$q^* = (\alpha - (n-1)q^* - c)/2$$

$$2q^* = \alpha - (n-1)q^* - c$$

$$(n+1)q^* = \alpha - c$$

$$q^* = (\alpha - c)/(n+1).$$
So this is our unique Nash equilibrium.

N-player Cournot Model (3)

- To find prices and profits, we can substitute this solution for q* into our original demand function and profit function.
- Industry output $Q = nq^* = n(\alpha c)/(n+1)$
- Market price $P = \alpha n(\alpha c)/(n+1)$ = $(\alpha + nc)/n+1$
- Firm profit

```
\pi_i = [(\alpha - c)/(n+1)][\alpha - c - n(\alpha - c)/(n+1)]
= [(\alpha - c)/(n+1)][(\alpha - c)/(n+1)]
= [(\alpha - c)/(n+1)]^2
```

N-player Cournot Model (4)

 This then is a generalization of our duopoly case, where n = 2. Substitute n = 2 into the solutions before, and see that we get our duopoly outcomes.

$$q_1 = q_2 = (\alpha - c)/3$$

 $\pi_i = [(\alpha - c)/3]^2$

• Look also at how the model converges to perfectly competitive outcomes as $n \to \infty$.

$$\begin{array}{l} q_i \rightarrow 0 \\ Q \rightarrow \alpha - c \\ P \rightarrow c \\ \pi_i \rightarrow 0. \end{array}$$