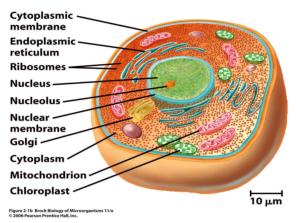
Chapter 2 세포의 구조와 기능


- * 세균의 중요성 : 개체의 수, 생태계에서의 기능, 인간생활에 미치는 영향
- * 생화학, 유전학, 분자생물학의 발전 → 세균(bacteria)의 연구를 통해서 발전

2. 진핵세포의 구조와 기능

종류: Algae, protoza, fungi, higher plants, and animals

구조 : 막으로 둘러싸여 있는 **Organelle(핵, 미토콘드리아, 엽록체 등)을 함유**

[진핵세포의 일반적인구조]

1) 세포질(cytoplasm, cytosol)

- * 생화학 반응, 점도변화, 물리적 변화, 원형질운동(cytoplsmic streaming)
- * 세포액 안에는 많은 단백질, 유기 대사물질 및 무기질 이온이 포함되어 있다
- * Cytoskeleton(세포골격구조)
 - Microfilaments: 세포의 운동(아메바운동, 원형질운동), 형태의 전환
 - Intermediate filaments:
 - Microtubles : 형태유지, 세포의 운동, 세포 내 물질 수송

2) 소포체 (Endoplasmic reticulum, ER)

- * 지질을 합성, 지질과 단백질을 저장
- * 이들 물질을 세포 밖으로 이동시키는 통로 역할
- ① **조면소포체(Rough ER)**: 막의 바깥쪽 표면에 Ribosome이 부착
 - 효소, 막단백질 합성
- ② **활면소포체(Smooth ER)**: ribosome이 없다. Phospholipid, steroid 합성

3) 골지체(Golgi body)

물질의 저장, 합성 및 운반 기능을 한다.

① 구조 : cistern, 액포(vacuole), 소포(vesicle) 등의 dictyosome 집합체

② 기능: 소포체에서 합성된 단백질의 저장
세포벽 다당류의 합성
분비과립 및 lysosome 형성
분비과립은 세포막과 융합하여 단백질(효소)를 세포 밖으로 방출

- Lysosome : 소화효소 함유
 - 소화효소는 조면소포체에서 만들어지고 골지체에서 포장된다.
 - 세포 내 소화, 이물소화 기관
 - lysosome 내의 소화효소들은 막을 통과 할 수 없다.

4) 리보좀(Ribosome)

- 침강계수가 80S(60S + 40S)로 소포체 또는 세포질에 분산되어 있다.
- 세포질의 ribosome은 분해되지 않는 단백질 또는 비막결합성 단백질 생성

5) 미토콘드리아 (Mitochondria) = 사림체

- ① 구조 외막, 내막, cristae, matrix, DNA, ribosome(70S)
- ② 기능 TCA cycle, 지질의 산화, 산화적 인산화 반응
 - 에너지를 생산하는 발전소 기능, 호기적 조건
- 6) 엽록체(Chloroplast)

구조 - 외막, 내막, thylakoid, DNA, ribosome(70S)

- Thylakoid:
- · 엽록소들이 thylakoid 막단백질에 결합되어 있다.
- · 광합성 색소, 전자전달계, 광인산화반응을 하는 효소 함유
- · Tylakoid가 쌓여 grana를 형성
- · Tvlakoid막을 둘러쌓고 있는 무색의 matrix를 stroma라 한다
- ◎ Stroma : 단백질, 효소, 색소체, 리보좀, 색소체DNA 및 RNA가 있다.

7) 핵 (Nuclear)

- · 염색체(chromosome) : 유전물질 함유
- 핵막(내막과 외막), 핵공(핵내외 물질의 선택적인 수송)
- · 핵의 DNA는 단백질(histone과 nonhistone)과 결합하여 존재
- ① 핵인(Nucleolus)
 - Chromosome이 밀집된 영역
 - Ribosome을 구성하는 rRNA의 합성
 - 유사분열시 사라졌다가 분열이 끝나면 다시 형성
- ② Nucleosome (뉴클레오좀)
 - DNA(165bp)와 histone(9분자)이 결합한 형태

- ③ 염색질(Chromatin)
 - 세포분열을 하지 않을 때 염색체는 부분적으로 풀어져 염색질을 이룬다.
- ④ 염색체(Chromosome)
 - 세포 분열기에 chromatin이 응집과 histone의 밀도가 높아져 염색체를 형성

8) 세포막과 세포벽

- ① 세포막
 - 원핵세포에 거의 없는 sterol를 많이 함유하고 있다.
 - 세포막의 sterol은 막의 유연성을 줄이고 막구조를 안정시킨다.
 - 세포막은 내포작용(endocytosis)와 배출작용(exocytosis)을 한다.
- * Pinocvtosis : 액상물질 내포작용
- * Phagocytosis : 고체 또는 세포와 같은 입자 내포작용
- ② 세포벽
 - 원핵세포의 세포벽보다 훨씬 두텁고 화학조성은 간단하며 chitin, glucan, cellulose 등으로 구성
 - 세포벽의 단백질은 glvcoprotein으로 구조의 안정화에 기여
 - 진핵세포의 세포벽은 peptidoglycan 층이 없다.
- * a-1,6 mannan ∶

효모 특유의 성분으로 5-10%의 단백질 함유하며 세포의 강도 유지

* Protoza : 세포벽이 없는 대신에 pellicle(외피)라고 하는 외막 함유

9) 편모와 섬모

- 2개의 microtube(미소관)로 된 중심섬유와 그것을 9 쌍의 microtube로 둘러 싸여 있다.

10) 액포(Vacuoles)

- Tonoplast(액포막)에 의하여 둘러 싸여 있는 세포의 세포질에 있는 공간을 말한다
- 액포는 골지체로부터 형성되며 다양한 기능을 가진다.
- 단백질, sugars, 유기산 및 무기이온의 일시적인 보관장소로 작용
- 3. 세포분열(Cell division)

세포분열 과정 : DNA 합성 → 유사분열에 의한 핵분열 → 세포질분열 과 세포막 형성 → 두 세포의 분리

① 유사분열(mitosis) : 진핵세포에서 염색체가 분리되는 과정

- 전기(prophase), 중기(metaphase), 후기(anaphase), 말기(telophase)
- Cell cycle : G1 (세포성장), S(DNA 합성, G2(세포성장과 분열준비) : 간기
 M 기(체세포분열 → 세포질분열)
- ② 감수분열 : 염색체의 수가 반으로 줄어들어 분열 후 딸세포에 단 한 벌의 염색체만 전달되는 과정
 - 배수체가 반수체로 되는 과정(2n → n)
 - 염색체수가 반감되면서 생식세포(germ cell)로 될 때 반수체 형성

4. 세포막과 영양소의 수송

종류: 촉진확산, 능동수송, group translocation, endocytosis

- 1) 확산(Diffusion) : 수동수송
- ① 수동적 확산 (simple diffusion)
 - 세포내외의 농도차에 의한 물질의 이동
 - 확산속도는 농도차, 용질분자의 크기와 친유성에 의해 의존한다.
- ② 촉진적 확산 (facilated diffusion)
 - 확산속도는 수송단백질(carrier protein)에 의해서 크게 증가한다.
 - 수송단백질 (carrier proteins)을 permease라 한다
 - ▶세포막에 끼어 존재한다.
 - ▶수송단백질은 기질에 대하여 특이성을 가진다.
 - 지용성이 아닌 분자가 세포 내로 들어가는 데 효과적이다.
 - 세균들이 glycerol을 운반할 때 이용(Salmonella, Pseudomonas 등)

2) 능동수송(active transport)

- 능동수송을 위해서는 **에너지, 운반단백질**이 필요하다
- 에너지: ATP, proton motive force (pmf)
- Transport종류: uniport, symport, antiport
- 같은 물질에 대해 여러 개의 수송계가 존재

3) 작용기 전달(Group translocation)

- 원핵세포는 group translocation에 의해서 영양소를 운반하는데 이 과정에서 세포 내로 운반되는 분자는 화학적으로 변형되어 불투과성인 형태로 된다.
- 작용기 전달 기작은 특히 대사에너지를 보존하는 것이다.
- ex) Phosphoenolpyruvate: sugar phosphotransferase system(PTS)

- ▶ 이 시스템에 의해 원핵세포는 포도당, 과당, 만노스 등의 당을 수송
- ▶ PTS 단백질은 물질수송의 역할 외에 화학주성의 수용체로 작용
- ex) Coenzyme A transfer system : 지방산이 세포 내로 도입될 때 작용

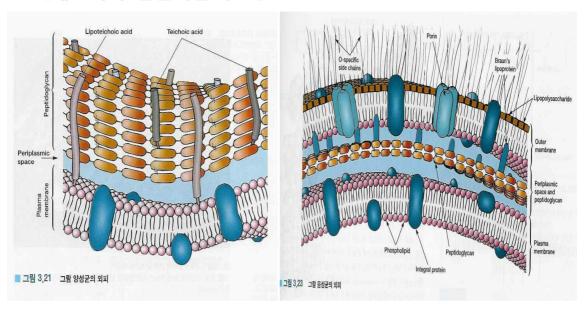
4) 철의 수송

- 철의 흡수는 ferric ion(Fe³⁺)과 이 유도체의 난용성으로 운반에 유용한 철은 매우 적다.
- Siderophore라는 저분자물질이 유리상태의 철 이온과 강하게 결합하여 세포에 공급해 준다
- Enterobactin : 장내세균에 의하여 합성되는 siderophore-Fe 복합체를 세포질외막에 있는 단백질이 해리시키며, 해리된 철은 세포 내로 수송된다.

5. 보충학습 (알아두기)

■ 원핵세포구조와 기능

구 조	기 능	
원형질막(plasma membrane)	선택적 투과장벽, 영양물질과 노폐물 수송, 여러 대사활동이 일어나는 장소	
리보좀(ribosome)	단백질 합성	
봉입체	탄소, 인 및 다른 성분의 저장	
핵양체	유전물질(DNA) 함유	
Periplasmic space	가수분해효소, carrier protein 존재	
세포벽(cell wall)	세균의 형태를 부여,	
협막(capsule), 점액층(slime layer)	식균작용 억제, 표면에 부착	
핌브리아(fimbriae), 필리(pili)	표면에 부착, 세균의 접합	
편모(flagella)	세포운동	
내생포자(endospore)	열악한 환경에서의 생존	


■ 진핵세포의 소기관의 기능

구 조	기능
세포막(cell membrane)	세포의 경계, 물질의 선택적 투과장벽, 세포간의 상호작용, 표면부착, 분비 등의 기능
세포질	여러 대사과정이 일어나는 장소
소포체(ER)	물질수송, 단백질과 지질합성
리보좀(ribosome)	단백질 합성
미세섬유	세포의 모양이나 운동성에 관여
골지체	물질의 분비와 포장, 리소좀형성
리소좀(lysosome)	세포내 소화
미토콘드리아	TCA회로, 전자전달, 산화적인산화 반응, 에너지생산
핵	유전물질의 보관, 세포의 기능 통제
섬모와 편모	세포운동
액포	물질의 일시저장 및 수송, 소와(식포), 세포의 수분 균형유지(수축포)

■ 진핵세포와 원핵세포의 차이점

특 징	원 핵 세 포	진 핵 세 포
유전물질의 구조		
핵막 으로 둘러싸인 핵	없다.	있다.
DNA와 결합한 히스톤	없다.	있다.
염색체의 수	1 ^a	하나 이상
인트론의 존재	드물다.	일반적으로 존재한다.
인의 존재	없다.	있다.
유사분열	일어나지 않는다.	일어난다.
유전자 재조합	부분적, DNA의 일방성 전달	감수분열과정에서 많이 일어난다.
미토콘드리아	없다.	있다.
엽록체	없다.	있다.
스테를 성분	대부분 존재하지 않는다 ^b .	세포막에 존재한다.
편모	단일한 단백질 섬유로 이루어진	막으로 둘러싸여 있고 대부분 9+2의 구조를
	미세한 구조	이루는 20개의 미세소관으로 이루어진다.
소포체, 골지체	없다.	있다.
세포벽	펩티도글리칸 등 화학적으로	화학적으로 단순한 중합체로 이루어진
제고 ㄱ	복잡한 구성을 한다.°	다.
간단한 소기관의 비교		
리보좀	70S (30S+50S)	80S
리소좀과 퍼옥시좀	없다	있다.
미세소관	없거나 드물게 존재한다.	있다.
세포골결	없는 것으로 생각된다.	있다.
분화	제한적	조직, 기관 등으로 분화

[세포막의 일반적인 구조]

