
 ± ±
    ±

 ±
    ±



Subing (17)→(15) gives        ± 




  


            

          (23)  

Subing (22)→ (23) using (19) and (21) gives,

 ±
    


±
±


 ±
    











   ±

 ±
   


   



   ± (24)

1st term in bracket ≡ Normal standard state (Henry's std state)

2nd term in bracket comes from the chemical formula of the solute.

[1st term + 2nd term] ≡ New standard state

 ≡ 

Then (24) becomes

 
   



  ± (25)

►For ideal ionic solution ±  and the 1st two terms are left.

►The last term describes deviation from the ideal behavior and most 

important here. It is obtained through experiments as follow;

 1) Measure ± for solvent from bpe and fpd as follow.

 → Use Gibbs-Duhem eq (  


) calculate ± for solute!

2) Measure the electrochemical cell (to be treated in 11.8).

3) Use  model for dilute electrolytes solution (beliw).

10.4 Calculating ± using Debye-Hckel model  



Solute ions in solvent causes a electrostatic potential,φ ← Can be 

calculated if the spatial distribution of ions is known.

In dilute electrolyte solution the energy change experienced by an ion 

of charge ± is much smaller than the thermal energy (kT), i.e.,

                       ± << kT             (26)

                       e=charge on a proton 

                       k=Boltzmann constant (=R/AN)

In this limit (viz. 26) the dependence of  on spatial distribution of 

ions around an arbitrary central ion can be calculated as follow.

Electrical potential around an isolated ion in a dielectric medium;

ɸ  
± 

(27)

And in the dilute electrolyte solution;

ɸ  
±

 ĸ (28)

Due to the exponential decrease, (28) falls off much more rapidly 

than (27), called "Potential of an ion is screened by other ions". The

 (Debye length=1/) is related to the individual charges and 

molality (m) by

ĸ 


  


   (29)

It is noted that screening is more effective with solute concentration,  



multiple charged ions, and with larger value of    . 

See the ratio of the two potentials in Figure 10.3 with different 

values of molality for an aqueous solution of 1-1 electrolyte. 

 


 

Note: Potential fall off much more rapidly with r in electrolyte 

solution than in dielectric.

Rapid falls off the ratio with increasing electrolyte concentration→ 

The central ion is surrounded by the oppositely charged ions forming 

a diffuse ion cloud to reduce the net charge of the central ion. 

(Figure 10.4). The net effect is to screen the central ion from the 

rest of solution at a screening length of 1/κ. At κr≃8, the net charge 

becomes zero. Larger value of κ corresponds to smaller diffuse cloud 

(r) and more effective screening. 

Figure 10.4

Concentration dependent terms is defined as ionic strength (I)  ;

 





  

  




 

  (30)

EXAMPLE PROBLEM 10.2

Calculate I for (a) a 0.050 molal solution of NaCl and for (b) a 



ĸ 





 






 × 



 




Na2SO4 solution of the same molality.

Solution

a.  



  
 


×   

b.  



  
 


×    

--------------------------------------------------------

Subing (30) into (29) gives,

                                  

  

at 298K (31)



(Note the numerator of the second bracket in eq 29 is replaced by 2I/m)

1st term=fundamental constants independent of solvent and solute.

2nd term= ionic strength of solution and relative permittivity of solute

--------------------------------------------------------

EX) Calculate the Debye–Hückel screening length 
1

  at 298 K in a 

0.00100m solution of NaCl.

 

1
8 1 8 1 6 1

7

0.00100mol kg
9.211 10  m  = 9.211 10  m 3.29 10 m

78.54

1
3.04 10 m 304 nm

r

I







  



    

  

--------------------------------------------------------

In terms of conventional unit of mol/L, and εr=78.5 for water, 

                  κ=3.29x109√I m-1      @298K.

By calculating charge distribution and work for charging to    

from neutral state, Debye-Hckel obtained the mean activity coeff 

called Debye-Hckel limiting law (Only obeyed for small I );

 ± ｜｜
ĸ

(32)

►Negative (-) sign ► ±  

→ Chemical potential of electrolyte solutions<Uncharged solution (25)

                                          
   



  ±

→ Debye-Hckel model describes lowering of enengy. 

►±∝ , ∝  →   ± ∝-  (See Figure 10.5)



► ± decreases with increased ionic strength.

Figure 10.5

See different slopes for the same solute concentration is due to the 

different   .

Eq 32 is simplified for aqueous solution @ 298K to

 ±  ｜｜  or   ±  ｜｜   (33)

Figure 10.6 compares D-H model with experimental data. Deviation 

from the model is seen from  =0.1 (AgNO3) and  =0.06 (CaCl2). 



See as I⇀0, data obey D-H model (limiting law).

--------------------------------------------------------

EX) Calculate I, ,  and a for a 0.0250m solution of AlCl3 at 298K. 

Assume complete dissociation.

 

  

3

1

34 5

1

AlCl 1,  3,  3,  1

0.0250
9 3 0.1500 mol kg

2

ln 1.173 3 0.1500 1.3629

0.2559

0.025 0.025 3 1.0546875 10

0.05699 molkg

0.05699 0.2559 0.0146

v v z z

I

m
a

m

m

m

a






   








 









    

  

     


   
 

   


  



--------------------------------------------------------

Empirical model for high concentration (Davis eq)

±  ｜｜ 











 


      (34)

Better agreement with experimental data (Figures 6, 7) at high solute 

concentrations is seen (See dotted lines of D-H and solid line for 



Davis model)-but (34) has no theoretical background.

10.5 Chemical equilibrium in electrolyte solutions

From eq 9.67,

                       




 

Activity is defined as

                        




where 


is the reduced (dimensionless) concentration of malarity.

Consider the degree of dissociation of MgF2 in water.

: Equilibrium constant in terms of molarity for ionic salt

     (sp=solubility product).

           MgF2(s) → Mg2+(aq) + 2F-(aq)        (37)

 = 6.4x10-9 (See Table 4 for selected substance).

Activity of pure solid = 1, then (35) can be written as:

  
  








 ±

  ×  (38)

From the stoichiometry:   = 2CMg
2+      (38)'       

For (38) and (38)':

# of variables(M=3): ± , , CMg
2+

# of Equations(N=2): (38), (39) 

→The degree of freedom: F=M-N=1.

→Not directly solvable. 

→Solution is obtained by iteration. 



Assign arbitrary value for ± (1 is a good start.)

→Calculate  (and CMg
2+) from (38).

→Calculate the ionic strength from (30) 

 





  

  




 

    (30) 

→Calculate ± from (33) as 0.870 

 ±  ｜｜   (33)

→Not agreed with the assigned value of 1.

⇒Repeat the same procedure with the calculated value until           

  satisfied (Direct substitution).


