Measurement techniques

Chemical method = Follow the progress of reaction
Physical method = Follow the change of property of the system

35.4 Reaction Mechanism

Reaction mechanism=Collection of individual elementary steps for the

overall reaction
—QOrder of reaction
Mechanism 1is verified only by the rate equation determined

experiment.

35.5 Integrated Rate Law Expression

35.1.1 First-order Reaction
Consider the following reaction:
k

A — P (23)
If the reaction is first order, rate law becomes:

R=k[A] (24)

Regardless of order of reaction, R can be written as:

_ d[4]
R=——1" (25)
Then
dlA]
s =—k[A] (26)

Eq (26) is called differential rate eq.

Separation of variables and integration gives:

(4]
S [

by



[A]
(A,

[A]=[A]pe ™ (27a)

In ( ) =—kt

»Exponential decay of reactant concentration w/ time.

Taking natural logarithm gives:
In[A]=In[A], -k t (28)

»In[A] vs t plot: A straight line of slope of -k and intercept In[A],.
See Figure 4 for (27a) and (28). If the experimental data lie on the

curve the reaction is said to follow the first order Kkinetics.
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Reactant concentration as a function of
time for a first-order chemical reaction as
given by Equation (35.27). (a) Plots of

| A] as a function of time for various rate
constants . The rate constant of a given
curve is provided in the figure. (b) The
natural log of reactant concentration as a
function of time for a first-order chemical
reaction as given by Equation (35.28).



The concentration of product [P] can be given as:

[P+ (4] =[A4],
[P = [A4],— (4]
[Pl =[A],(1—e ") (27b)

35.5.2 Half-life and First Order Reactions
Half-life=ti» =time for [M],—[M]./2

Plug [A]=[A],/2 in (28): In[Al=In[Al, -k t (28)
Al /2
ktl/Zzln([[/]lo]/ ) =—1n2
tijn = 1%2 (29)

This is one way to determine the rate constant k.

EEKAMPLE PROBLEM 35.3

’:IThe decomposition of N>Ojs is an important process in tropospheric chemistry.
The half-life for the first-order decomposition of this compound is 2.05 X 107 s.
How long will it take for a sample of N,Os to decay to 60% of its initial value?

igiSOIUtIOfI

« Using Equation (35.29), the rate constant for the decay reaction is determined
{using the half-life as follows:
in2 In2
k = = —— =338 X 1075
iy 205 X10%s

The time at which the sample has decayed to 60% of its initial value is then
determined using Equation (35.27a):

[N;05] = 0.6[N;0s]y = [NpQslge (338 X 10757
0.6 = g_(3—38 w7 3—1:”
— In{0.6)
338 X 10727}
Scan EXAMPLE 35.3

=t =151 X 10*s



?E)(A_MPLE PROBLEM 35.4

Carbon-14 is a radioactive nucleus with a half-life of 5760 years. Living matter ex-
| changes carbon with its surroundings (for example, through CO5) so that a con-
stant level of 14C is maintained, corresponding to 15.3 decay events per minute.
Once living matter has died, carbon contained in the matter is not exchanged with
the surroundings, and the amount of '*C that remains in the dead material decreas-
es with time due to radioactive decay. Consider a piece of fossilized wood that
demonstrates 2.4 C decay events per minute. How old is the wood?

Sclution

The ratio of decay events yields the amount of '*C present currently versus the

amount that was present when the tree died:
['C1  2.40 min™!
Mc)y, 153 min~!

= 0.157

The rate constant for isotope decay is related to the half-life as follows:

In2 In 2 In2
k= —"= = — S =381 x 10724

fip 5760 years 182 X lD”

With the rate constant and ratio of isotope concentrations, the age of the fos-
silized wood is readily determined:

e
[**Clo
( [14C) ) -
[]4C]
14
i (I[“‘((Z:l]) YT xlm‘”s In(0.157) =
486 x 10''s = ¢

This time corresponds to an age of roughly 15,400 years.
Scan EXAMPLE 35.4

35.5.3 Second -order Reaction
Consider the following elementary second order reaction:

24 LA P (30)

All dimerization reactions in polymer: 2 Monomers— Dimer



Type I= Single reactant like (30)
Type [I=Two reactants (A and B)

For type [,
R=k[A]? (31)
According to (8) H:%% 8)
1 dlA4]
R= 5 dt (32)
From {31) and (32)
_dlA] 2k[A]*  (33)

dt
Let 2k=ke; (Effective rate constant). Separation of variables and

integration (33) give:

[A}d[A] ft
— = ks pdt
fmo (A S

1 1
AT Ta],~ Ferrt
1 1
m: —[A]O +kefft (34)

See Figure 5 for [A]/[A], for various Keir and for the plot of Eq (34).



koM~ 's ™)

gﬁ!
<
0
0 50 100
Time/s
(a)
20 -
i
< 10
<
1
0 50 100
Time/s
(b)

FIGURE 35.5

Reactant concentration as a function of
time for a type | second-order chemical
reaction. (a) Plots of [A] as a function of
time for various rate constants. The rate
constant of a given curve is provided in
the figure. (b) The inverse of reactant
concentration as a function of time as
given by Equation (35.34).

Figure 5

35.5.4 Half-life and Reaction of Second Order (Type D)

1 1

Plug [A]=[Al./2 in (34): TaT= T et (34)

1
t1/2 _ o7 1 (35)

kepp[Alg

< Rf: For the first order reaction t,;, = % (29) >

The half-life for the second order reaction is inversely

to the initial concentration.

proportional



35.5.5 Half-life and Reaction of Second Order (Type II)
Second-order reactions of type II involve two different reactants, A
and B, as follows:

A+ B &, P (36)

Assuming first order in both A and B, the reaction rate is
R=Fk[A]|B] (37)
In addition, the reaction rate wrt the reactant concentrations is

__dl4] _  dlBl
R=—— === (38)

Notice that the loss rate for the reactants is equal such that

[B]o_ [A]o + [A] = [B]
A +[A] = [B] (39)

Equation (39) provides a definition for [B] in terms of [A] and the

difference in initial concentration, [B],— [4], =2 (Constant). Then

%:— k[A][B) =— k[A](A +[A])
[4] d[A] B t
fmo [Al(~A +14]) fokdt (40)

Next, solution to the integral involving [A] is given by a formula:

/x(cdix):_%m(czx)

Using this formula, the integrated rate law expression becomes




Xln( [A] ) | L, =—kt
1 AH[A] A+[Ay
—[ln( [A] ) ln( [A]O )]_kt
1 [B] [B]o o
S (Ep - =

) =kt (41)

See this eq is not applicable for [B]O = [A]O. This case reduces to the
type I with ker=k.

35.6 Numerical Solution
When the integrated rate law can not be solved a numerical method

is applied. Typical one is Euler's method for numerical integration.

4t p (42)
dlA]
C =kl (43)
AlA]
At == k(4]
N[A]=— ~t(k[A]) (44)

(A4 = 1Al + A [A]
= [A4],+ at(—&[4])
= [4],— kat[A], (45)
The process i1s continued until the entire concentration profile i1s

obtained. (See Figure 7 for numerical approximation for the first

order reaction)
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Comparison of the numerical approxima-
tion method to the integrated rate law ex-
pression for a first-order reaction. The rate
constant for the reaction is 0.1 M's~'. The
time evolution in reactant concentration
determined by the integrated rate law ex-
pression of Equation (35.27) is shown as
the solid red line. Comparison to three nu-
merical approximations is given, and the
size of the time step (in ms) employed for
each approximation is indicated. Notice
the improvement in the numerical approx-

imation as the time step is decreased.

Figure 7

35.7 Sequential First-order Reaction

k. k
A-S572p (46)

%:_ k,lA] (47)

%= kylA] = k1 (48)

d[P]

5 k1] (49)

[Al,=0 [1,=0 [Pl,=0 (50)



[A] =[A], (51)
dl]]
g~ ka [A]— k1]
%Jrk][]] kylA]e ™ (52)

General solution take the form :

— | P(z)dz P(x)dx
y=ce f [/Qe/ dx+ C]

(e ' —e ") 4], (53)

The [P] is readily determined using the initial conditions, [Al]..

(4] = [A]+ [+ 7]

[Pl =[A4],—[A] =[] (54)
Then
- kAekat—kzjekat
[Pl = ( — +1)[4], (55)

See Figure 8 for the concentration profiles with different k.
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Concentration profiles for 4 sequential reaction in which the reactant (A, blue line) forms an

intermediate (I, orange line) that undergoes subsequent decay to form the product (P, red

line) where (a) k4 = 2k; = 0.1's ' and (b) k4 = 8k, = 0.4 5™, Notice that both the maximal

amount of I in addition to the time for the maximum is changed relative to the first panel.
(€) ky = 0.025k; = 0.0125 57", In this case, very little intermediate is formed, and the
maximum in [1] is delayed relative to the first two examples.

Figure 8

35.7.1 Maximum Intermediate Concentration

Letting

i
Car

where == kA (e M —e"al,  (53)

)iy =0 (56)

Then the time at which [I] is maximum is obtained as:

1 k4
= ——In(— 57
tmax kA_ k’[ Il( k’[) ( )

The ¢ depends only on the rate constants.

max

EXAMPLE 35.5
Determine the time at which [I] is at a maximum

k,=2k;=0.1s "

Solution

for



This is the first example illustrated in Figure 35.8 where k, =0.1 s

and k120.053_1. Using these rate constants and Equation (35.57),

t 1s determined as follows:

max

1 k4 1 0.1s *
tmax = ln(—) = — — In — ) =139s
ka—k; k" 015 '—0.05s ' 0.055 "
35.7.2 Rate Determining Step
Consider
k k
A-2712p e
Two limiting situations can occur: ka>>kr and ka <<k
When ka>>k; then Eq 55 becomes
— kit — ket
) ) ke " —kge B
lim [P)= lim (=2 +1)[4],) = (1—e ")[4],(58)
ko ko0 k[— kA
When ka<<k; then Eq 55 becomes
—kt — it
. . ke " —kge o
lim[Pl= lim ((—= +1)[4]) = (1—e "]4], (59)
k> k>0 k[_ kA

The time dependence of [P] is identical to the first order decay.

See Figure 9 for the two limiting cases.
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FIGURE 35.9
Rate-limiting step behavior in sequential
reactions. (a) k, = 20k, = 15 ' such
that the rate-limiting step is the decay of
intermediate 1. In this case, the reduction
in [1] is reflected by the appearance of [P].
The time evolution of [P] predicted by the
sequential mechanism is given by the
orange line, and the corresponding evolu-
tion assuming rate-limiting step behavior,
[P],. is given by the red curve. (b) The
opposite case from part (a) in which
kq =004k, = 0025 ! such that the
rate-limiting step is the decay of
reactant A.

Figure 9



35.7.3 The Steady State Approximation

SS assumption in radical polymerization

Decomposition : 2R R, = dc[lf] =—2 dgj =2fk, Vi
Initiation : R+ M—M, « At SSfor R, %: 0,viz. R, = k;|R|[M[= R,

Propagation : M, « +M—M, | * Rp = k:p [Mn . [[M]
Termination by coupling: M, « + M, « —M, . R =k[Ms]

At steady state, d[]c‘l/t. ) =0
R =R, i.c,2fk ] =k[M -]
2fky 0 5
L )= ()
t

P o= d[M:k [M'][MZk/’p(Qme

1
2
=L, )? (a1
Rate of propagation is the rate of polymerization since
most monomers are consommed in this step.

Consider the following sequential reactions:

FRAyLLY 60)
A gl 61)
=k 62)
CH - wi ©3)
%z 2 (64)

See Figure 10 for numerical simulations.

The intermediate concentrations change very slowly so that

dlf] _
=0 (s8) (65)



d[jl]ss

=0=kylA] =k [4],,

dt
5], = ’;—f[A] = Z—f[A]oe"“At (66)
d[ft]” = 0=kl ~ kL],
Bl = AL = Ll ™ )
d[g‘” — ey (L] =k (Al e ™ (68)
Integration of this eq gives (Apply IC: @ t=0, [P]=0):
P, =[A4],(1—¢ ") (69)

Under SS, [P] follows first order kinetics (See (27h)).

Consider the variation of [1;](66) with time.

d[]l]ss d kA

Ky
At dt

e

kit

[Ale ™) =— 2 [A]e (70)

Under SS (70)=0. That is, k1>>kA2[A]O, so that ki is sufficiently large
such that [I] is small all the time. Same is true for [I»] where
ke>>ka’[Al, (See 67).

See Figure 11 for the comparison of numerical solution and SS

concentration profiles.
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Comparison of the numerical and steady-
state concentration profiles for the
sequential reaction scheme presented in
Equation (35.44) where k4 = 0.02 5™
and k; = k; = 025 ' Curves correspon-
ding to the steady-state approximation are
indicated by the subscript ss.

Figure 11

EXAMPLE 35.6
Consider the following sequential reaction scheme:
k k
A5 725p
Assuming that only reactant A i1s present at t=0, what 1s the expected

time dependence of [P] using the steady-state approximation?

Solution
The differential rate expressions for this reaction were provided 1in



Eqs (47), (48), and (49):

dlA]
= kAl (47)
%z ke y[A]— k17 (48)
dlp
UL, (49)

Applying the steady-state approximation to the differential rate
expression for I and substituting in the integrated expression for [A]
of Equation (51) yield

i
A=k a) -
= %[A] _ %[AJoe"“At

Substituting the preceding expression for [I] (66 for [I]1) into the

differential rate expression for the product and integrating yield

d[ ]_ _ k4 —kyt k4 k4 kgt
—ar ~ F= o lkldle ) 1ak, = Al = Eale ™ 66)
L7 k4t
f d[P]—k:A[A]O/e gy
0 0
1 _
[Pl=kylAl)l—(1—e )
A

This expression for [P] is identical to that derived in the limit that
the decay of A is the rate-limiting step in the sequential reaction
[Equation (59)].



35.8 Parallel Reactions

B
k:B/,
A (71)
N
e o
d|lA
AT oy lA)~ ko] == Gy )(A] 72)
d[B] _
p = ky[A] (73)
d[C] _
yr =k, [A] (74)
Integrating (72) yields (IC: at t=0, [A]=[A],)
[A] = [4],e Hrthet (75)
(75)—(73) and (74) and integrate
kp —(ky+ ko)t
8= b= e
ke —(ky+ ko)t
[C] = PR [A]y(1—e ) (77)
[B] kg
T (78)
[l ke
The yield is the probability that a given product will be formed:
k;
- Dk
where Yo, =1 (80)
Assume kp=2kc¢ in Figure 12
ke ko 1
Po= kptke (ko) +tks 3 (8D
2
Then Pp= 3

Figure 12 reveals that [B]=2[C], consistent with the calculated yield.



