(<r²>=cnl², freely jointed, rotating, hindered rotation models)

4. Chain conformation depends on temperature, solvent structure, crystallization, orientation, presence of other polymers.

Molecular weight determination

♦Gaseous molecules: By IG law

Molecules must be separated (diluted→ideal gas law)

 $PV=nRT \rightarrow n \rightarrow MW= weight/n$

◆Polymer: By dilute solution law (Solution thermodynamics)

Polymer chains must be separated in solvent

< Sperling Ch 4: Concentrated solution, phase separation, diffusion>

3.1.2 How does a polymer dissolve?

► Amorphous polymer at T>Tg (Polymer melts);

Follow Fick's law of diffusion, 4.4)

 $J_A = -CD\nabla x_A = -D\nabla C_A$ <Flux is directly proportional to the gradient>

 $C=C_A + C_B$, D=Dffusivity

► T < Tg = Non-Fickian < Diffusion depends on (relaxation) time >

Slow diffusion of solvent into the polymer→ Plasticizes

polymers \rightarrow Lowers the Tg below ambient temperature \rightarrow Swelling occurs rapidly in rubbery state \rightarrow Swollen-unswollen boundary moves inward (Stress at the swelling boundary causes craze or fracture: ESCR) \rightarrow Polymers diffuse out of swollen mass into solvent to follow Fickian diffusion.

Cross-linked polymer only swells to equilibrium, not dissolved.

► Also, polymers with high T_m, or strong secondary bonds (PAN) are not dissolved without degradation → MW cannot be determined directly.

3.2 The solubility parameter

Solubility of A in B is governed by the free energy of mixing

$$\Delta G_{M} = \Delta H_{M} - T \Delta S_{M} \qquad (3.1)$$

 $\Delta G_M < 0$: Solution occurs spontaneously.

 $\Delta G_M > 0$: Separation occurs spontaneously.

 $T\Delta S>0$: \because Entropy increases upon mixing \rightarrow Entropy drives mixing.

 $\blacktriangleright \Delta H_M > 0$ (Endothermic) for nonpolar organic compounds.

► Exception is found when the two species attract one another by having opposite polarities (acid and base), or hydrogen bonding.

► For regular solutions, (No specific interactions; Moderately diverges from the ideal solution) Hildebrand and Scott:

$$\Delta H_{\rm M} = V_{\rm M} \left[\left(\frac{\Delta E}{V_1} \right)^{\frac{1}{2}} - \left(\frac{\Delta E}{V_2} \right)^{\frac{1}{2}} \right]^2 \nu_1 \nu_2 \tag{3.2}$$

V_M=Total volume of mixture

 ΔE = (Molar) Energy of vaporization at zero pressure (infinite separation) V=Molar volume of each component (1=Solvent, 2=Polymer) v= Volume fraction of each component (1=Solvent, 2=Polymer)

 $\Delta E/V=$ Cohesive energy density (Energy of vaporization per unit volume) [=] (cal/cm³), (MPa)

Solubility parameter is defined as

$$\delta = \left(\frac{\Delta E}{V}\right)^{\frac{1}{2}}$$
(3.3)

When the components have identical/essentially identical sp values, they are dissolved, miscible (compatible), where the solution process is spontaneous due to the positive ΔS_{M} . (Eq 3.1)

<Note Eqs. (3.2) and (3.3) are invalid for negative heat of mixing>

3.2.1 SP Tables

Scan Tables 3.1 and 3.2

Table 3.1	Solubility parameters of some common solvents	
Laple J. I	Solubility parameters of some outinition	

	δ		H-bonding"	Specific Gravity ^b	
Solvent	$(cal/cm^3)^{1/2}$	MPa ^{1/2}	Group	20°C (g/cm ³)	
Acetone	9.9	20.3		0.7899	
Benzene	9.2	18.8	р	0.87865	
n-Butyl acetate	8.5	17.4	m	0.8825	
Carbon tetrachloride	8.6	17.6	р	1.5940	
Cyclohexane	8.2	16.8	p	0.7785	
n-Decane	6.6	13.5	p	<u> </u>	
Dibutyl amine	8.1	16.6	s	÷	
Difluorodichloromethane	5.5	11.3	р		
1.4-Dioxane	7.9	16.2	m	1.0337	
Low odor mineral spirits	6.9	14.1	р	·	
Methanol	14.5	29.7	s	0.7914	
Toluene	8.9	18.2	P	0.8669	
Turpentine	8.1	16.6	P	·	
Water	23.4	47.9	S	0.99823	
Xylene	8.8	18.0	Р	0.8611	

Source: J. Brandrup, E. H. Immergut, and E. A. Gruike, eds., Polymer Handbook, 4th ed., Wiley-Interscience, New York, 1999.

"Hydrogen bonding is an important secondary parameter in predicting solubility. p, Poorly H-bonded; m, moderately H-bonded; and s, strongly H-bonded.

J. Brandrup and E. H. Immergut, Polymer Handbook, 3th ed., Wiley-Interscience, New York, 1989, sec. III, p. 29.

Note: 1 $(cal/cm^3)^{1/2} = 2.046 \times 10^3 (J/m^3)^{1/2}$.

Table 3.2	Solubility parameters and	densities of	common	polymers (6)
-----------	---------------------------	--------------	--------	--------------

Polymer	$\delta (\mathrm{cal/cm^3})^{1/2}$	$\delta (\mathrm{MPa})^{1/2}$	Density (g/cm ³)		
Polybutadiene	8.4	17.2	1.01		
Polyethylene	7.9	16.2	0.85 (amorphous)		
Poly(methyl methacrylate)	9.45	19.4	1.188		
Polytetrafluorethylene	6.2	12.7	2.00 amorphous, estimated		
Polyisobutene	7.85	16.5	0.917		
Polystyrene	9.10	18.6	1.06		
Cellulose triacetate (56% ac groups)	13.60	27.8	1.28ª		
Cellulose tributyrate			1.16 ^a		
Polyamide 66	13.6	22.9	1.24		
Poly(ethylene oxide)	9.9	20.0	1.20		
Poly(ethylene terephalate), partly crystalline	10.7	21.9	1.38		
Poly(ethylene terephalate), amorphous	10.7	21,9	1.34		
Poly(vinyl alcohol)	12.6	25.8	1.26		
Poly(vinyl chloride)	9.6	19.8	1.39		

Note: 1 $(cal/cm^3)^{1/2} = 2.046 \times 10^3 (J/m^3)^{1/2}$.

*C. J. Malm, C. R. Fordyce, and H. A. Tanner, Ind. Eng. Chem., 34, 430 (1942).

Why methanol (δ =14.5 (cal/cm³)^{1/2}) or water (23.4) does not dissolve polybutadiens (8.4)

or polystyrene (9.1)? Why benzene (9.2) and toluene (8.9) dissolve these polymers?

Rule of thumb

Polymers will dissolve in solvents having sp within about one unit of their own, in $(ca/cm^3)^{1/2}$.

3.2.2 Experimental determination of sp (See SY Lee)

The sp of a new polymer is determined by several means.

► Cross-linked polymers by swelling test.

Define the swelling coefficient (Q)..

 $Q = \frac{m - m_0}{m_0} \times \frac{1}{\rho_s} \qquad (3.4)$

m=Weight of the swollen polymer

m_o= Weight of the dried polymer

 ρ_s =Density of the swelling agent

Plot Q vs sp of various solvents (Figure 3.1)-The maximum defines the solubility of the polymer. *<The best solvent swells the polymer the most>*

► The theoretical extent of swelling is predicted by the Flory-Rehner theory *<Cross-link density and solvent-polymer attractions are considered>*.

Scan Figure 3.1 here

Figure 3.1 The swelling coefficient, *Q*, reaches a maximum when the solubility parameters the solvent nearly matches that of the polymer, for several cross-linked systems: polymetric (**I**), polystyrene (**A**), and a polymethane-polystyrene interpretating polymer networks (*** G**) Solvents having solubility parameters near $2 \times 10^4 (J/m^3)^{3/2}$ will swell the IPN best.

sp of PS=?

sp of PU=?

sp of PU-PS IPN= $2x10^4 (J/m^3)^{1/2}$

The peak for the IPN is broader and appears in-between the two.

►Soluble polymers

The intrinsic viscosity of the polymer in several solvents is measured and plotted [η] vs sp of solvents. Since, chain conformation is most expanded in the best solvent (To be seen w/ Eq 3.82), the intrinsic viscosity is the highest for the best polymer-solvent match.

Scan Figure 3.2 here.

Figure 3.2 Determination of the solubility parameter, using the intrinsic viscosity method (8), **poly**isobutene (A) and polystyrene (B). The intrinsic viscosity, $[\eta]$, is a measure of the inditical chain size. See Section 3.8.

3.2.3 Theoretical calculations of sp: An example

Chemical structure \rightarrow Estimate sp (Group contribution theory)

Define the molar attraction constants, G for each group,

$$\delta = \frac{\rho \sum G}{M} \tag{3.5}$$

ρ=Density

M= Molecular weight (of repeat unit, mer)

Group molar attraction constant (G) by Small and Hoy (Table 3.3)