Scan Table 3.3 here

Table 3.3 Group molar attraction constants at 25°C (according to Smali; derived fram measurement of heat of evaporatlon)'

Group G Group e Group G
—CHy 214 Ring S-membered 105-115  Br single 340
—CHy— single-bonded 133 Ring &-membered 95-105 I single 425
—CH< 28 Conjugation 20-30 CFZ] w-fluorocarbons onl 150
»C< 93 H {variable) 100 CFal Y 294
CHy= 19 © ethers 70 S sulfides 225
—CH= dovble-bonded 111 CO ketones 275 SH thiols 315
> 0= 19 COoO esters 310 ONG  nitrates ~440
—CH—CL 283 CN 410 NG, {aliphatic nitro-compounds) — ~440)
-(|3= (13‘ 222 Cl (mean) 260 PO, {organic phosphates) ~500
Phenyl 735 Ci single 290 Si (in silicones) 38
Phenylene  {g,m, p) 658 Cl twinned as in >CCl; 240

Naphthyl 1146 c triple as in —CCly 250

Sowrce: P A, Small, J Appl Chem., 3,71 (1953),
*Units of & = {cal-cm™**mol.
tThe solubility paramater can be caloulzted vie d = pRG/AT, where M is the mer molecular weight,

For example, the solubility parameter of polystyrene may be estimated from
Table 3.3. The structure is

+CH—CHy,

wshich containg —CH;— with a G value of 133, a _CFH_ with G equal to
18, and a phenyl group with G equal to 735. The density of polystyrene is
8.05 g/em’, and the mer molecular weight is 104 g/mol. Then equation (3.5)

1.05
=15, (133+28+735) (3.6)
8 =9.05(cal/em? ]]’{2 3.7)

Table 3.2 gives a value of 9.1 (cal/em®)'? for polystyrene,

HW Problem 1

Calculate the sp's for TMPTA, and two isocyanurates in Supplement.



3.3 Thermodynamics of mixing

3.3.1 Types of solutions

3.3.1.1 The Ideal solution

In 3.2, solubility of a polymer in a solvent was examined in terms of
their respective sp, which was governed by heat of mixing. The

entropy of mixing is entirely ignored.

Ideal solution (See the Supplement)

Interactions between A-A = B-B= A-B
AVy=0, AHy =0

Ideal solution follows Raoult’s law.

p; =pin;  (3.8)

pi=Partial pressure of component, i
pi°=Vapor pressure of pure i

ni=Mole faction of component, i in the solution

The free energy of mixing (AGy)= ZFree energies of dilution per

molecule (Incompressibility assumed)



o
2

AGy = KT [N;In (E—i) +N,In (i—z)] (3.10)

k=Boltzmann constant, T=Absolute temperature

N1, N;, = Number of molecules for component, 1 and 2.

From Section 3.9 (E&R) (/talic)

AG=n (moles) RT2x/nx=n" (molecules) kTZxlnxi=kTZn;Inx;=(3.11)

<nk=(n/Na) Na k =NR (Note k=R/N,)>

Plug 3.8 into 3.10,

AGwm <0 : Necessary, but not sufficient condition for miscibility

Since AHu=0 for ideal solution (AGm = AHm -TASw),

entropy of mixing becomes

ASy = —K[N; Inn; + NyInn,] (>0) (3.12)

ASuw>0—Mixing always occurs spontaneously for ideal solution.



3.3.1.2 Statistical thermodynamics of mixing
Eq (3.12) can be derived from the statistical thermodynamics as follow.
Boltzmann Eq.

ASw =k InQ) (13)

Q=Total number of ways of arranging N, identical solute molecules in

No=N1+N, lattice slots and N; solvent molecules in N, (Figure 3.3).
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g=e 3.3 lllustration of two types of molecules on quasilatice structures. (a) Two types of
=1 mofecules; (£) a blend of two types of polymer molacules; (€) a polymer dissolved in a
= The entropy of mixing decreases from (&) to (c) to (b) because the number of different
== of arranging the molecules in space decreases. Note that the mers of the polymer chains
T=agnstrained to remain in juxtaposition with their nsighbors.



The total number of arrangement is given by,
Q=N.//(N1!N,D)  (a)
Make use of String’s approximation:

InN! =NInN—-N (3.14)

Plug (a) into (13), and apply String’s formula,
ASv =k InQ=kIn No!/(N1! N2 =k[(NoInNo-Ny)-(N1InN1-N1)- (N2InN2-N>)]
=k [(Nl +N2) |nNo - Nl - N2 - N]_lan + Nl - NzlnNz + Nz]

- k [(Nl + Nz) 1n(N1 + Nz) - Nlln Nl - NzlnNz] (3.15)
= Kk[(N; + N,)InNo — N;In N; — N,InN,]

Rearrange this to get (12)

=-k [N1(InN1-InN,) +N,(InNz-InNy) ]

==-k [N1InN1/No, +N2InN2/N,]

= —k[N; Inn; + N;In n,] (12)

Above was driven for low molecular weight solute and solvent where

one molecule occupies one lattice slot)

When the polymer has x chain segments (mers) the total entropy of
mixing is given by

ASM == _k(Nl ln V1 + Nzln Vz) (316)



For unit volume,

ASm _ _ XiNjlnv; . . o
w =y (316a) <Forideal solution V=3 V;>

v; = Volume fraction of solvent
v, = Volume fraction of polymer

For polymer — solvent solution:

_ Ny

v = s (3.17)
_ .’XJNZ

vy = i (3.18)

For polymer-polymer solution:

x1N
v, = ————— (3.19)
x1N1+x2N2
x,N
v, = a2 (3.20)
x1N1+x2N2

ASy is the combinatorial entropy computed by considering the
possible arrangements of the molecules on the lattice (Figure 3.3).
The number of ways that the system can be rearranged is reduced

when one or both of the species exist as long chains.



3.1.3.3 Other types of solutions

Ideal solution (AV=0)

AHM = O, ASM = _k(Nl ln V1 + Nzln Vz)

» Athermal solution; AHu=0,
ASy # —K(N; Inv; + Nylnvy) (3.16)
» Regular solution (Close to ideal solution)
ASy =0, AHu =Finite
» Nonideal solutions; ASy; #0, AHw # 0
Note Hildebrand’'s use of ideal as a good solvent is different from ©

temperature (3.5), which involves a thermodynamically poor solvent.

3.3.2 Dilute Solutions (P J Flory)
Flory-Huggins theory introduced the dimensionless parameter x; to

represent the heat of mixing;

A (3.21)

X1 = %N, v,

Subing (21, AHwm) and (16, ASy) in (AGv= AHwm -TASwm) gives



AGM = kT[N1 In V1 + Nzln Vo + X1N1V2] (322)
Entropy terms<0 Enthalpy term>0

AGy; > 0—Phase separation

AGy < 0—Molecular solution (Necessary condition for miscibility)

Eq (22) is the starting point of many eqgs

»The partial molar free energy of mixing:
Differentiate (22) wrt N;, and use n (molecules) k=N (moles) R—

AG; = RT [1n(1 —vp)+ (1-3) v, + leg] (3.23)

The osmotic pressure is given by

n=-%4 (3.24) Then
> = —5—T [ln(l —v,) + (1 - i) v, + le%] (3.25)

V; = Molar volume of the solvent
»Expand (25) using In (1+x)=x-x?/2+... to give the second virial

coefficient as

V2 1 . i
Ay =g (3-x) B26) in T=RT(Gractact+-) (4D

v, = Specific volume of the polymer.

»Flory © temperature can now be seen as the point where x;=1/2,

and A,=0.



