$\Phi \equiv 0^{\circ}$ for trans conformation and G=T-120°, G'=T+120°. So more trans conformation gives larger second moment of end-to-end distance. The last term is greater than one. (See Lecture # 200 for energy level of T, G, and G')

2.9 The Gaussian Chain

Freely jointed model (and other end-to-end distance model):

- →gives idea of flexible, randomly oriented chains
- →doesn't lead to any further analysis.

Motivation

Consider a representative chain OA (Figure 2.16) with a coordinate system attached at one end.

The end-to-end vector be:

$$\mathbf{r} = \mathbf{i}_{X} + \mathbf{j}_{Y} + \mathbf{k}_{Z} \tag{2.13}$$

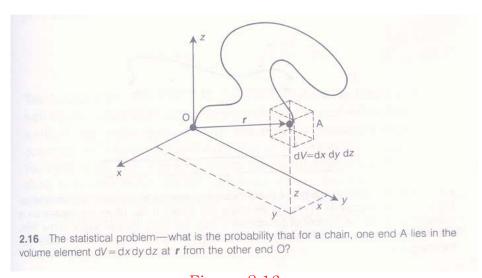


Figure 2.16

The chain OA can take up an enormous number of different conformations, characterized by $r \to \text{The probability that the other}$ chain end lies within the volume element dV=dxdydz decreases as r increases!

See Figure 2.17 for one dimensional conformation.

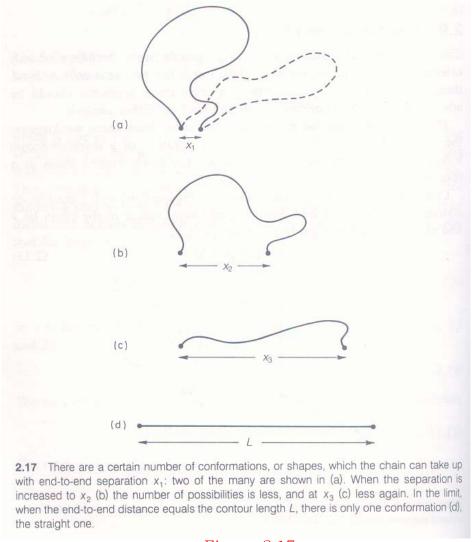


Figure 2.17

For x = L (Contour length): Only one conformation exists \rightarrow The probability of occurrence is insignificant.

For x = 0 (O and A coincide): The greatest # of conformation \rightarrow Probability of occurrence is greater than any other values of x.

For $0 \le x \le L \rightarrow Probability$ of occurrence is intermediate.

▶ If x_1 can be achieved by 10^3 times more than x_2 , which is again

 10^3 times more than x_3 , then the occurrence of value

$$x_1/x_2/x_3=10^6/10^3/1$$

A function closely describe this behavior is the Gaussian function.

Gaussian chain (model):

End-to-end separation of a polymer follows Gaussian statistics.

One dimensional Gaussian function:

$$p(x) = \frac{\exp[-(x/\rho)^2]}{\sqrt{\pi} \rho}$$
 (2.14)

 ρ = a representative length (a parameter)

The probability that the chain length lies between x and x+dx is linearly proportional to the magnitude of dx. The probability of the end-to-end length lying between x and x+dx to be the product of p(x) and dx:

$$p(x)dx = \frac{\exp[-(x/\rho)^2]}{\sqrt{\pi}\rho}dx$$
(2.15)

See Gaussian function at Figure 2.23.

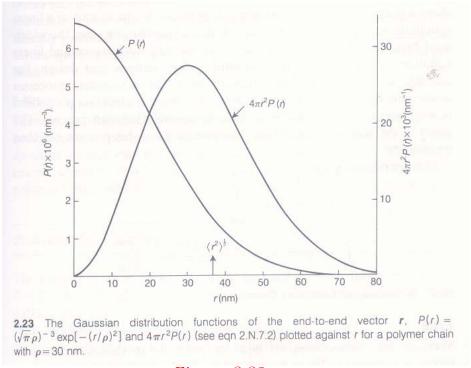
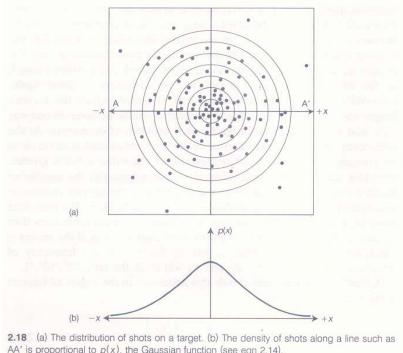


Figure 2.23.

 \blacktriangleright Bell type, symmetrical about, and with a maximum at x=0.

The function is applicable for any random processes such as the distribution of rifle shots on a target (Figure 2.18).



AA' is proportional to p(x), the Gaussian function (see eqn 2.14).

Figure 2.18

- ▶ The distribution of shots (# of shot per unit length) along line A-A is described by eq 2.14.
- ▶ The # of shot in a length dx will be given by eq 2.15.

Three dimensional Gaussian model

The probability that chain end A lies between $x \sim x + dx$, $y \sim y + dy$, and $z\sim z+dz$ to be

$$P(x,y,z)dxdydz = p(x)p(y)p(z)dxdydz$$

$$= \frac{\exp-\left[(x^2 + y^2 + z^2)/\rho^2\right]}{(\sqrt{\pi}\rho)^3}dxdydz$$
(2.16)

$$= \frac{\exp[-(r/\rho)^2]}{(\sqrt{\pi}\rho)^3} dx dy dz$$

(2.17)

Gauss 함수의 조작(2N7)

$$P(r) = \frac{\exp(-(r/\rho)^2)}{(\sqrt{\pi}\rho)^3}$$
 (2.N.7.1)

:. 확률은

$$P(r)dV = \frac{\exp(-(r/\rho)^{2})}{(\sqrt{\pi}\rho)^{3}} \times 4\pi r^{2} dr$$

$$= \frac{4\pi}{(\sqrt{\pi}\rho)^{3}} r^{2} \exp[-(r/\rho)^{2}] dr$$
(2.N.7.2)

• most probable value of r

$$\frac{d}{dr}(P(r)dV) = 0$$

$$\frac{d}{dr}(P(r)dV) = \frac{4\pi}{(\sqrt{\pi}\rho)^3} \left[2r\exp-(r/\rho)^2 + r^2(-\frac{2r}{\rho^2})\exp-(r/\rho)^2 = 0\right]$$
$$2r = r^2(\frac{2r}{\rho^2}) \Rightarrow \frac{r}{\rho} = 1 \Rightarrow \rho = r$$

● 제곱값 평균(mean square value of r)

$$\langle r^{2} \rangle = \frac{\int_{0}^{\infty} r^{2} P(r) 4\pi r^{2} dr}{\int_{0}^{\infty} P(r) 4\pi r^{2} dr}$$

$$= \frac{4\pi}{(\sqrt{\pi} \rho)^{3}} \int_{0}^{\infty} r^{4} \exp[-(r/\rho)^{2}] dr$$

$$= \frac{3}{2} \rho^{2}$$
(2.N.7.4)
(2.N.7.5)

(공식)

$$\int_{0}^{\infty} x^{2n} e^{-ax^{2}} dx = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}$$
 (b)

from (a) and (b)

$$x = r, n = 2, a = \frac{1}{\rho^2}$$

$$\therefore \left[\int_0^\infty r^4 e^{-(r/\rho)^2} dr = \frac{1 \cdot 3}{2^{2+1} (\frac{1}{\rho^2})^2} \sqrt{\rho^2 \pi} \right] \times \frac{4\pi}{(\sqrt{\pi} \rho)^3} = \frac{3}{2} \rho^2$$

So,
$$\langle r^2 \rangle = \frac{3}{2} \rho^2$$
 (2.18)

from 자유사슬 modul

$$\langle r^2 \rangle = nl^2$$
 (2.10, 2.19)

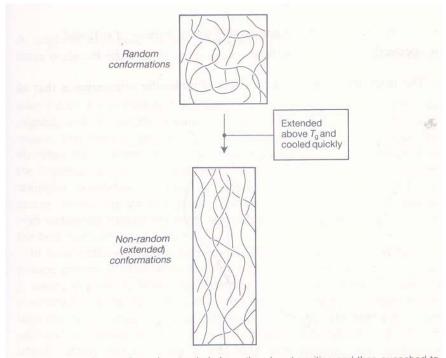
(18)+(19)

$$\rho = \left(\frac{2n}{3}\right)^{\frac{1}{2}}l\tag{2.21}$$

2.10 분자배향(Molecular Orientation)

분자배향은 고의적으로 혹은 본의 아니게 가공과정○서 일어남(Fig.2.19) 고분자용융체 성형장치 분자배향 냉각 배향고정→이방성

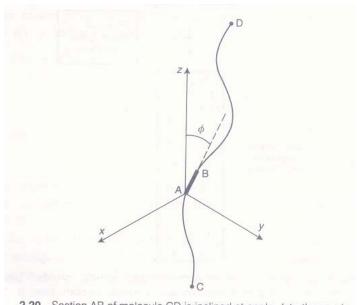
배향의 측도 혹은 측정 (Fig. 2.20)



2.19 An amorphous polymer is extended above the glass transition and then quenched to the glassy state. The resulting conformations are no longer random: there is 'frozen-in' molecular orientation, which remains when stress is removed.

Figure 2.19

Figure 2.20



2.20 Section AB of molecule CD is inclined at angle ϕ to the z-axis.

분자 (1)의 segment(혹은 functional group) AB (Z축과 각Φ) 평균배향 …… $\cos^2\Phi$ (sample 內의 全 segment에 대한 평균) 배향인자 = f (orientation factor, Herman)

$$f = \frac{3\cos^2 \Phi - 1}{2} \tag{2.22}$$

for

$$\Phi = 0^{\circ}, f = \frac{3-1}{2} = 1$$
 perfect orientation along Z-axis

$$\Phi$$
 = 90°, $f = \frac{-1}{2}$ per endicular to Z-axis

How about random orientation?

배향과 물성의 이방성

배향방향 : 공유결합적인 성질

강직성↑, 강도↑, 열팽창계수↓

수직방향: 2차결합 성질(van der Waals)

강직성↓. 강도↓. 열팽창↑

배향 vs 굴절율