10

The *z*-Transform

10. The z-Transform

Laplace transform - for continuous time signal/system *z*-transform - for discrete time signal/system

10.1 The z-transform

For an input $x[n] = z^n$

$$y[n] = H(z)z^{n}$$

$$H(z) = \sum_{n=-\infty}^{+\infty} h[n]z^{-n}$$

$$\downarrow z = e^{j\omega} \text{ with } \omega \text{ real (i.e., } |z| = 1)$$
DTFT of $h[n]$

z-transform of h[n] (when z/ is not restricted to unity)

• z-transform of a general discrete-time signal x[n]

$$X(z) \stackrel{\Delta}{=} \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

• Notation :
$$x[n] \xleftarrow{z} X(z)$$

For a complex variable z, let $z = re^{j\omega}$

$$X(re^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n](re^{j\omega})^{-n}$$

$$X(re^{j\omega}) = \sum_{n=-\infty}^{+\infty} \{x[n]r^{-n}\}e^{-j\omega n}$$

$$X(re^{j\omega}) = \Im\{x[n]r^{-n}\}$$

 $|z| = 1 = |e^{j\omega}|$ is equivalent to the Fourier Transform

• Region of convergence (ROC) : a range of values of *z* for which *X*(*z*) converges.

Note) If the ROC includes the unit circle, then the Fourier transform also converges.

$$x[n] = a^n u[n]$$

$$X(z) = \sum_{n=-\infty}^{\infty} a^n u[n] z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| > |a|$$

Region of Convergence (ROC)

$$|az^{-1}| < 1$$

Pole-zero plot and region of convergence for 0 < a < 1

-5-

Ex.10.2)
$$x[n] = -a^n u[-n-1]$$

$$X(z) = -\sum_{n=-\infty}^{+\infty} a^n u[-n-1] z^{-n} = -\sum_{n=-\infty}^{-1} a^n z^{-n}$$

$$\sum_{n=-\infty}^{\infty} a^{-n} n = 1 \quad \sum_{n=-\infty}^{\infty} a^{-1} > n$$

$$= -\sum_{n=1}^{\infty} a^{-n} z^n = 1 - \sum_{n=0}^{\infty} (a^{-1} z)^n$$

$$X(z) = 1 - \frac{1}{1 - a^{-1}z}$$

$$= \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| \langle |a|$$

Ex. 10.3)
$$x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]$$

$$X(z) = \sum_{n=-\infty}^{+\infty} \left\{ 7 \left(\frac{1}{3} \right)^n u[n] - 6 \left(\frac{1}{2} \right)^n u[n] \right\} z^{-n}$$

$$= 7 \sum_{n=-\infty}^{+\infty} \left(\frac{1}{3} \right)^n u[n] z^{-n} - 6 \sum_{n=-\infty}^{+\infty} \left(\frac{1}{2} \right)^n u[n] z^{-n}$$

$$= 7 \sum_{n=0}^{\infty} \left(\frac{1}{3} z^{-1} \right)^n - 6 \sum_{n=0}^{+\infty} \left(\frac{1}{2} z^{-1} \right)^n$$

$$= \frac{7}{1 - \frac{1}{3} z^{-1}} - \frac{6}{1 - \frac{1}{2} z^{-1}} = \frac{1 - \frac{3}{2} z^{-1}}{\left(1 - \frac{1}{3} z^{-1} \right) \left(1 - \frac{1}{2} z^{-1} \right)}$$

$$= \frac{2(z - \frac{3}{2})}{1 - \frac{3}{2} z^{-1}} = \frac{1 - \frac{3}{2} z^{-1}}{1 - \frac{1}{2} z^{-1}} = \frac{1 - \frac{3}{2} z^{-1}}{1 - \frac{3}{2} z^{-1}} = \frac{1 - \frac{3}{2} z^{-1}}{1 - \frac{$$

$$=\frac{z(z-\frac{3}{2})}{(z-\frac{1}{3})(z-\frac{1}{2})}$$

ROC?
$$\left| \frac{1}{3} z^{-1} \right| < 1$$
 & $\left| \frac{1}{2} z^{-1} \right| < 1$

$$|z| > \frac{1}{3}$$
 & $|z| > \frac{1}{2}$

Ex. 10.4)
$$x[n] = \left(\frac{1}{3}\right)^{n} \sin\left(\frac{\pi}{4}n\right) u[n]$$

$$= \frac{1}{2j} \left(\frac{1}{3}e^{j\pi/4}\right)^{n} u[n] - \frac{1}{2j} \left(\frac{1}{3}e^{-j\pi/4}\right)^{n} u[n]$$

$$X(z) = \sum_{n=-\infty}^{\infty} \left\{ \frac{1}{2j} \left(\frac{1}{3}e^{j\pi/4}\right)^{n} u[n] - \frac{1}{2j} \left(\frac{1}{3}e^{-j\pi/4}\right)^{n} u[n] \right\} z^{-n}$$

$$= \frac{1}{2j} \sum_{n=0}^{\infty} \left(\frac{1}{3}e^{j\pi/4}z^{-1}\right)^{n} - \frac{1}{2j} \sum_{n=0}^{\infty} \left(\frac{1}{3}e^{-j\pi/4}z^{-1}\right)^{n}$$

$$= \frac{1}{2j} \frac{1}{1 - \frac{1}{3}e^{j\pi/4}z^{-1}} - \frac{1}{2j} \frac{1}{1 - \frac{1}{3}e^{-j\pi/4}z^{-1}}$$

$$ROC = \frac{1}{2j} \frac{1}{2} z$$

$$|\frac{1}{3}e^{j\pi/4}z^{-1}| < 1 & |\frac{1}{3}e^{-j\pi/4}z^{-1}| < 1$$

$$\therefore |z| > \frac{1}{2}$$

10.2 The Region of Convergence for the z-Transform

Property 1: The ROC of X(z) consists of a ring in the z-plane centered about the origin.

$$z = re^{j\omega} \Rightarrow \sum_{n=-\infty}^{+\infty} |x[n]| r^{-n} < \infty$$
 (Fig. 10.6)

Property 2: The ROC does not contain any poles.

why? X(z) is infinite at a pole

Property 3 : If x[n] is of finite duration, then the ROC is the entire z-plane, except possibly z=0 and/or z= ∞ .

$$X(z) = \sum_{n=N_1}^{N_2} x[n]z^{-n},$$

case1)
$$N_1:-, N_2:+ z=0$$
 or $z=\infty \not\subset ROC$

case2)
$$N_1 \ge 0$$
 $z = \infty \subset ROC$

case3)
$$N_2 \le 0$$
 $z = 0 \subset ROC$

Ex.) : finite sequence $\{1,2,3\}$

$$X(z) = 1 + 2z^{-1} + 3z^{-2}$$

ROC : entire complex plane except for z = 0.

$$X(z) = z + 2 + 3z^{-1}$$

ROC : entire z-plane except for z = 0 and $z = \infty$.

$$X(z) = z^4 + 2z^3 + 3z^2$$

ROC : entire *z*-plane except for $z = \infty$.

Property 4 : If x[n] is a right-sided sequence, and if the circle $|z|=r_0$ is in the ROC, then <u>all finite values</u> of z for which $|z|>r_0$ will also be in the ROC.

$$X(z) = \sum_{n=N_1}^{\infty} x[n]z^{-n} \ (N_1 : \text{positive or negative or 0})$$

$$|z| = r_1 \text{ with } r_1 > r_0 \implies x[n]r_1^{-n} \text{ is abs. summable if } x[n]r_0^{-n} \text{is also for } N_1 \le n < \infty.$$

Property 5 : If x[n] is a left-sided sequence, and if the circle $|z|=r_0$ is in the ROC, then <u>all values</u> of z for which $0 < |z| < r_0$ will also be in the ROC.

$$X(z) = \sum_{n=-\infty}^{N_2} x[n]z^{-n} \ (N_2 : \text{positive or negative or 0})$$

$$|z| = r_2 \text{ with } r_2 < r_0 \implies x[n]r_2^{-n} \text{ is abs. summable if } x[n]r_0^{-n} \text{is also for } -\infty < n \le N_2.$$

Property 6 : If x[n] is two sided, and if the circle $|z|=r_0$ is in the ROC, then the ROC will consist of a ring in the z-plane that includes the circle $|z|=r_0$

refer to Fig.10.8, p.752

Ex. 10.7)
$$x[n] = b^{|n|}, b > 0$$
 (Fig.10.10, p753)
 $= b^{n}u[n] + b^{-n}u[-n-1]$
 $b^{n}u[n] \longleftrightarrow \frac{1}{1-bz^{-1}}, |z| > b$
 $b^{-n}u[-n-1] \longleftrightarrow \frac{z}{1-b^{-1}z^{-1}}, |z| < \frac{1}{b}$
ROC \Rightarrow Fig.10.11(a) - (d) (p.755)

For b>1, (a), (b) \Rightarrow no common ROC

For
$$b < 1$$
, (c), (d) $X(z) = \frac{1}{1 - bz^{-1}} - \frac{1}{1 - b^{-1}z^{-1}}, b < |z| < \frac{1}{b}$
$$= \frac{b^2 - 1}{b} \frac{z}{(z - b)(z - b^{-1})}, b < |z| < \frac{1}{b}$$

(ROC: Fig. 10.11(e) at p.755)

Property 7 : If the *z*-transform X(z) of x[n] is rational, then its ROC is bounded by poles or extends to infinity

Property 8: X(z): rational, x[n]: right sided

=> ROC : the region in the *z*-plane outside the outermost pole.

Note) if x[n] is causal, ROC? includes $z = \infty$

Property 9 : X(z) : rational, x[n] : left sided

=> ROC : the region in the *z*-plane inside the innermost nonzero pole.

Note) if x[n] is anticausal, ROC? includes z = 0

10.3 The Inverse z-Transform

$$X(re^{j\omega}) = \mathcal{F}\left\{x[n]r^{-n}\right\} \Leftrightarrow x[n]r^{-n} = \mathcal{F}^{-1}\left\{X(re^{j\omega})\right\}$$
$$x[n] = r^n \mathcal{F}^{-1}\left[X(re^{j\omega})\right] = r^n \frac{1}{2\pi} \int_{2\pi} X(re^{j\omega})e^{j\omega n}d\omega$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(re^{j\omega}) (re^{j\omega})^n d\omega - z = re^{j\omega}$$

$$x[n] = \frac{1}{2\pi i} \oint X(z) z^{n-1} dz$$

$$z = re^{j\omega}$$

$$dz = jre^{j\omega} d\omega = jz d\omega$$

$$\therefore d\omega = (1/j) z^{-1} dz$$

$$x[n] = \frac{1}{2\pi i} \oint X(z) z^{n-1} dz$$

$$z = re^{j\omega}$$

$$dz = jre^{j\omega}d\omega = jzd\omega$$

$$d\omega = (1/j)z^{-1}dz$$

From the Residue theorem

$$x[n] = \text{Res}\{X(z)z^{n-1}\}\$$

: integration around a counter clockwise closed circular contour centered at the origin and with radius r

• Alternative method for the inverse *z*-transform

: partial-fraction expansion

$$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}, \qquad |z| > \frac{1}{3}$$

$$X(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}} \longrightarrow x[n] = \left(\frac{1}{4}\right)^n u[n] + 2\left(\frac{1}{3}\right)^n u[n]$$

ROC:
$$(1/4) < |z| < (1/3) \implies x[n] = \left(\frac{1}{4}\right)^n u[n] - 2\left(\frac{1}{3}\right)^n u[-n-1]$$

ROC:
$$|z| < (1/4)$$
 $\Rightarrow x[n] = -\left(\frac{1}{4}\right)^n u[-n-1] - 2\left(\frac{1}{3}\right)^n u[-n-1]$

Another procedure for the inverse *z*-transform
power-series expansion of *X*(*z*)

Ex. 10.12)

$$X(z) = 4z^2 + 2 + 3z^{-1}, \qquad 0\langle |z| \langle \infty$$

$$x[n] = 4\delta[n+2] + 2\delta[n] + 3\delta[n-1]$$

Ex. 10.13)

$$X(z) = \frac{1}{1 - az^{-1}}, \quad |z| > |a|$$

$$= 1 + az^{-1} + a^2 z^{-2} + \cdots \text{ (by long division)}$$

$$\therefore x[n] = a^n u[n]$$

If
$$|z| < |a|$$
,

$$\frac{1}{1 - az^{-1}} = \frac{1}{(-az^{-1})(1 - a^{-1}z)} = (-a^{-1}z)(1 + a^{-1}z + (a^{-1}z)^{2} + \cdots)$$

$$= -a^{-1}z - a^{-2}z^{2} - \cdots$$

$$\therefore x[n] = -a^{n}u[-n-1]$$

10.4 Geometric Evaluation of the Fourier Transform From the Pole-Zero Plot

10.4.1 First-Order Systems

$$h[n] = a^n u[n]$$

$$H(z) = \frac{1}{1 - az^{-1}}$$

$$= \frac{z}{z - a} \quad |z| > |a|$$

$$H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

|H(e^{jω})|

$$\angle H(e^{j\omega}) = \theta_1 - \theta_2$$

(Fig. 10.13, p. 764)

10.4.2 Second-Order Systems

$$h[n] = r^{n} \frac{\sin(n+1)\theta}{\sin \theta} u[n] \quad \& \quad H(e^{j\omega}) = \frac{1}{1 - 2r\cos \theta e^{-j\omega} + r^{2}e^{-j2\omega}}$$
$$(0 < r < 1 \quad \& \quad 0 \le \theta \le \pi)$$

$$\Rightarrow H(z) = \frac{1}{1 - (2r\cos\theta)z^{-1} + r^2z^{-2}}$$

· Pole locations : $z_1 = re^{j\theta}$, $z_2 = re^{-j\theta}$

· zero: double zeros at z = 0

|H(e^{jω})|