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10. The z-Transform

Laplace transform - for continuous time signal/system
z-transform - for discrete time signal/system

10.1 The z-transform

Foraninput x[n]=2"
y[n]=H(2)z"
H(z) = ih[n]z‘n

N=—o00

lz =el” with wreal (i.e., |7 =1)

DTFT of h[n]

z-transform of h[n] (when |z| is not restricted to unity)
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* z-transform of a general discrete-time signal x[n]

A +O

X(z)= > _x[n]z™"

» Notation:  x[n]<«—=— X (2)

Fora complex variable z, let z=re!”

+o0

X (re!”)y= > x[n](re'*)™

N=—o0

-+00

X (re'®)y = > "{x[n]r "Je "

Nn=—o0

X (re!”) = 3{x[n]r "}
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zj=1=l|e’|isequivalent to the Fourier Transform

Im

Unit circle

* Region of convergence (ROC) : a range of values of z
for which X(z) converges.

Note) If the ROC includes the unit circle,
then the Fourier transform also converges.
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Ex. 10.1) X[n]=a"u[n]

X(z)= Y aunz" =3 (az)" =1_1 =2 |zplal

N=—o0 n=0 aZ Z - a.
Region of Convergence (ROC) laz ' |<1
Im

Unit Circle

z-plane

Re

Pole-zero plot and region of convergence for O<a<l1
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Ex.10.2)  x[n]=-a"u[-n-1]

X(z)=- i a'u[-n-1]z " =- ia”z‘n

N=-0 n=—c0
=—>a""=1-) (a'2)
nZ:: nzz(;( ) Unit Circle
1 z-plane
X(z)=1- -
l-a—z Re
1 4
— = ,1zK|a
Tt A
O<ax<l
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Ex.10.3)  x[n]= 7( ju[n] 6(%) u[n]

X(2) = i {7() ufn] - 6(
1

N |~
;/
c
—

S
e
%/_J
3

=7> Ezlj —62(121)

n=0 n=0 2
7 6 1-3z7

1-1z7 1-3z% (1-tz*fi-1z7)

2(z2-3) 1
= “z77M<l & |z«
(2-1(z-3) ROL? L
71>1 & \z\>%
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Ex. 10.4) x[n]:@j sm( ju[n]

(1 iz 4 i
(e w5 5o
X(2) = i {21 ( eJ”/“j [n]——(;e W“j u[n]}zn

i N Jir/4 —1)n i C ( e J7Z/4 —1j
1

1
T 2j1 _lglrig 1 2] 1-le ‘”/4 ROC="?
_1 jr/4,-1
X (2) = o2 ° °
(Z _1ejﬂ/4xz _1e—jﬂ/4)
3 3
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10.2 The Region of Convergence for the z-Transform

Property 1 : The ROC of X(z) consists of a ring in the z-plane
centered about the origin.

z=re’ = i\x[n]\r‘” <o (Fig.10.6)

N=—0o0

Property 2 : The ROC does not contain any poles.
why ? X(2) is infinite at a pole

Property 3 : If x[n] is of finite duration, then the ROC is the entire
z-plane, except possibly z=0 and/or z=co.
N,

X(z)= ) x[n]z™",

n=N;
casel) N;:— N,:+ z=0 or z=0 ROC
case2) N, >0 z=0 c ROC
case3) N, <0 z=0 < ROC
\} 2
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Ex.) : finite sequence {1,2,3}

X(z)=1+2z"+3z~

ROC : entire complex plane except for z = 0.

X(2)=z+2+3z"

ROC : entire z-plane except forz=0and z = o.

X(2)=z"+22°+3z°

ROC : entire z-plane except for z = .
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Property 4 : If x|n] is a right-sided sequence, and if the circle
|z|=r, Is In the ROC, then all finite values of z for which
[z>r, will also be in the ROE”

© P4
X(z) =Y _x[n]z™" (N, :positiveor negative or 0)
n=N;

zZ=r, with r, >r, = x[n]r," is abs.summable if x[n]r,"is also for N, <n <o,

Property 5 : If x[n] is a left-sided sequence, and if the circle
|z|=r, 1s in the ROC, then all values of z for which
0<|z|<r, will also be in the ROC.

N,
X(z)= > _x[n]z™" (N, : positiveor negative or 0)

N=—o0

z|=r, with r, <ry = X[n]r," is abs.summable if x[n]r;"is also for —oo<nN<N,.

Property 6 : If x[n] is two sided, and if the circle
|z|=r, is in the ROC, then the ROC will consist of
a ring in the z-plane that includes the circle |z|=r,

refer to Fig.10.8, p.752

o
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Ex. 10.7) x[n]=b", b>0 (Fig10.10,p753)
=b"u[n]+b™"u[-n-1]

U] > L 1Z>b
1 1
b™"u[-n-1]<«*— lzl<=
[ | 1-b*z7? b

ROC = Fig.10.11(a)—(d) (p.755)

For b>1, (a), (b) = no common ROC

1 1 1
For b<1,(c), (d) X(z)= — b<lzj<=
©. ) X@=r7 =75 <l<s
_b-1 : b<|z|< 1
b (z-bfz-b™) b
(ROC : Fig. 10.11(e) at p.755)
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Property 7 : If the z-transform X(z) of x[n] is rational,
then its ROC is bounded by poles or extends to infinity

Property 8 : X(z) : rational, x[n] : right sided
=> ROC : the region in the z-plane outside the outermost pole.

Note) if x[n] is causal, ROC ? includes z =0

Property 9 : X(z) : rational, x[n] : left sided
=> ROC : the region in the z-plane inside the innermost nonzero pole.

Note) if x[n] is anticausal, ROC ? includes z=0

\}
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10.3 The Inverse z-Transform

X (rei”) = Fixn]r "} x[n]r " = F1{X (re’)}

x[n] = r“fi‘l[x (rej“’)]: r" ij X (re')e'de
292

dz = jre!’dw = jzdw

X[n]=2i [, x(re)(re’”)'de W z=rel
72' T
~dw=(1/j)zdz

x[n] = %@x (2)z"*dz ——

From the Residue theorem . :
. Integration around a counter

X[n] = Res{X (z)z"} clockwise closed circular
contour centered at the origin
and with radius r
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e Alternative method for the inverse z-transform
. partial-fraction expansion

Ex. 10.9 - 11)
3-5z771
X(2) = 6 , Z|>1
R T
1 2 n l n
X(z2)= + m=) X[n]=|—| u[n]+2 = | uln
@St [n] U [n] @ [n]

ROC : (U4)<[z|<(1/3) =  x[n]= (Ej u[n] - 2(%) u[-n-1]

ROC : |z|<(1/4) =  X[n]= —Gjn u[-n-1]- 2@)1 u[-n-1]j

NG
T

ﬁt_ﬂf’
% %
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» Another procedure for the inverse z-transform
. power-series expansion of X(z)

Ex. 10.12)
X(z)=42"+2+3z7",  0(z[o

x[n]=46[n+2]+26[n]+35[n-1]
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Ex. 10.13)

1

X(2) = o

oo 7>l

=1+az"+a°z*+ --- (bylong division)
s X[n]=a"u[n]

If |2 <[a],
1 1
l1-az? (—azb)(1-a'z)

=(-a7z)A+a'z+(@'2)*+ --)

=—-a'z—a’z*— -

- X[n] =-a"u[-n-1]
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10.4 Geometric Evaluation of the Fourier Transform
From the Pole-Zero Plot

10.4.1 First-Order Systems

h[n]=a"u[n]

|He™™)|

1
H (Z) - 1_ az -1 Unit circle T wplane
= e
=—— |z[|>a] Y e\ 0
l— a h Re
] /.
- 1
H (e Ja)) — - -7 0 W
1—ae™'” @ o

LH(e)=6,-6, (Fig. 10.13, p. 764)

&
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10.4.2 Second-Order Systems

sin(n+1)0 - 1
h[n]=r" uln] & H(e*)= : _
[n] sin @ [n] ™) 1-2rcosée ' +ree 1%
(O<r<1 & 0<0<n7n)
f— H (Z) = 1 =) — |H(e")|
1-(2rcos@)z +r°z
. . jo -0 2
.Pole locations:z, =re'’,z, =re ‘H(ej“’) R ﬂ
.zero:double zeros at z=0 i Walvs| | o-
Unit circle Z-plane
\ r=10985
r=10.75
Re J&JL
&S > -7 0 ™
(b)
%ﬁn‘\\ @ /H(E")=26-(6,+6;) (Fig.10.14, p. 766)
¥(G%¢
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