1.2 Laplace Transform and Inverse Transform

= Laplace transform?

= Let f) be a given function which is defined for all t=0

= We multiply fi) by e™ and integrate with respect to t from zero to
infinity.

= Then, if the resulting integral exists, it is a function of S, say, F(s):

F(s) = jow e f (t)dt

‘ F(s) : “Laplace Transform” of the function f(t) and will be denoted
by £(t)



= Laplace transformation?

F(s) = ¢ = [“e™ f(t)dt (1)

mm) The operation just described, which yields F(s)

from a given f(t), is called the “Laplace

transformation”, as distinguished from the
transform.




= |nverse Transform?

: The original function f(t) in egn(1) is called the “inverse transform” or
“inverse of F(s)” and will be denoted by £ (F) : that is, we shall write

f(t) = £ (F)

<Notation>

Original functions are denoted by lower—case letters and their
transforms by the same letters in capital, so that F(s) denotes the
transform of f(t), and Y(s) denotes transform of y(t) and so on.



=(ex.1) Let f(t) = 1, when t=0. Find F(s)
= (sol.) From egn(1)

o0

£(f) = £(1) =] e*dt=—=—e*"
0 S ]f)

S

Hence, when s>0, ¢(1)=

= (ex.2) Let f(t)=e® when t=0, where a is a constant.

Find £(f).

a\ — [Coata-stay _ [ pata-Sty 1 —(s—a)t
%(et)__[oee dt__[oee dt_a_se O

o0

L
S—a

hence, when s—a>0, () =




(Question?)

“Must we go on in this fashion and obtain the transform of one function
after another directly from the definition?”

mm) The Answer is "NO!”

. The reason is that the Laplace transformation has many general properties
which are helpful for that purpose.

mm) A very important property : “Linearity”
(just as differentiation and integration)

<Theorem> (Linearity of the Laplace transformation)

The Laplace transformation is a linear operation, that is, for any function
f(t) and g(t) whose Laplace transform exists and any constants a and b
we have

¢laf(t) + bg(t)} = a¢{f(t)} + be{f(t)}



(proof) By the definition
qaf (t) +bg(t)} = j: e {af (t) +bg (t)}dt
—af e f(t)dt+b| eg(t)dt
=ax{ T (t)}+bz{g(t)}



= (ex.3) f(t) = cosh at = %(eat —-e) —«f)?

La: jw — f(t) = cosh( jw) :%(ejVVt +e ") =coswt

sol.) From Theorem(Linearity) and Example2, we obtain

°%(COShat)_Eg(eat)_Fl%(eat)__( 1 N 1
2 2 2's—a S+a
1 2
2s°—a’
- ¢(coshat) = — >
s —a’
o:g(sinhat)—l (eat)__ (—at) _( B 1 N
2 2 ' S—a S+a
- a
.¢(sinhat) = R
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Tablel. some Elementary function f(t) and Laplace
Transforms F(s) —x(f)

E
S —
2 t 1 7  Ccoswt >
32 S -I—W
3 t2 & 8  sinwt L
g3 S +W
4 t" ) 9 coshat >
(n=1,2-) g s —a
5 t2 T@+) 10 sinhat 2

(a positive) C S —a



x% propertied of Gamma function: I'(a+1)

o Definition :

@)= j: e't*dt  (a>0)

or I'(a+1)= jow e 't?dt
o Recurrence relation of the Gamma function.
- From the partial intergration method, we obtain
fg) = f fg
( J.g)I g + j‘g | .I: _ e—stdt — _e—tl .
| fg=fg—| fg /, /g =at™

C(a+1)=[ e tdt (f =e,g=1t?)
_ _atal® [T st a-1
=-et . _[O( e at® dt

=al(a)
s I'(a+1) =al(a)
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* a=n :positive integer

Q)= _[Oooe‘tdt =-[e']T=—(0-1) =1
r(2)=T1+1) =1r(a) =1
rR)=rQ2+1)=271(2)=2-1= 2!

S I'(n+1) =n!

12



<The proof of formulas in Table1>

1
> Proof of formulas 5 : st=x {dt="—dx)
¢(t?) _ [* a-stya _OO—X§al
()__[Oe tdt—_foe () < dx
1 e wiay, T(@a+1)
o g2+l IO e "X dx = ga+l
T 1 |
L) = (:afl) F(a+1)

o proof of formula 4

From formula 5. where a = n(positive integer).

F(n +1) n!
(t )_ n+1
S
— for the case of n=1 and n=2, formula 2 and 4 can be obtained

directly
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o proof of formulas 7 and 8

—First, Let us consider the Euler’s formula
{e”“ = coswt + jsinwt

— jwt

e "™ =coswt— jsinwt
mm) (|SAge iN complex—number expressed in the polar form
and in complex phasor notation.

¢(eM™) = ¢ (cos wt) +j¢ (sin wt)

- 1 S+ Jw S W
% eJWt = = = +
( )¢s—jw (s— jw)(s+ jw) s*+w° LW
(6)2!
S L (coswt) = ———
S +W

¢ (sinwt) = ——

s% +W?
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