
1.2 Laplace Transform and Inverse Transform
Laplace transform?
 Let f(t) be a given function which is defined for all t≥0

 We multiply f(t) by      and integrate with respect  to t from zero to 
infinity.

 Then, if the resulting integral exists, it is a function of S, say, F(s):

F(s) : “Laplace Transform” of the function f(t) and will be denoted

by  ℒ(t)

ste−

∫
∞ −=

0
)()( dttfesF st

3



Laplace transformation?

F(s)  =  ℒ(t) =                           (1)

The operation just described, which yields F(s)

from a given f(t), is called the “Laplace 

transformation”, as distinguished from the   
transform.
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 Inverse Transform?
: The original function f(t) in eqn(1) is called the “inverse transform” or 

“inverse of F(s)” and will be denoted by ℒ (F) : that is, we shall write 

f(t) =

<Notation>

Original functions are denoted by lower-case letters and their 
transforms by the same letters in capital, so that F(s) denotes the 
transform of f(t), and Y(s) denotes transform of y(t) and so on. 

1−

5



 (ex.1) Let f(t) = 1, when t≥0. Find F(s)

 (sol.) From eqn(1)

ℒ(f) = ℒ(1) = 

Hence, when s>0,    ℒ(1)=

 (ex.2) Let f(t)=      when t≥0, where a is a constant. 

Find ℒ(f).

ℒ(    ) =                                                              ; 

hence, when s-a>0,     ℒ(    ) = 
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(Question?)
“Must we go on in this fashion and obtain the transform of one function 
after another directly from the definition?”

The Answer is ”NO!” 

: The reason is that the Laplace transformation has many general properties
which are helpful for that purpose.

A very important property : “Linearity”

(just as differentiation and integration)

<Theorem> (Linearity of the Laplace transformation)

The Laplace transformation is a linear operation, that is, for any function 
f(t) and g(t) whose Laplace transform exists and any constants a and b   
we have 

ℒ{af(t) + bg(t)} = aℒ{f(t)} + bℒ{f(t)}
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 (ex.3) 
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f(t) ℒ(f) f(t) ℒ(f)

1 6

2 7

3 8

4
(n=1,2∙∙∙)

9

5
(a positive)
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Table1.  some Elementary function f(t) and Laplace 
Transforms F(s) =  (f)
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* a = n  : positive integer
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<The proof of formulas in Table1>

◦ Proof of formulas 5 : 

ℒ

∴ ℒ = 

◦ proof of formula 4

From formula 5. where a = n(positive integer).

→ for the case of n=1 and n=2, formula 2 and 4 can be obtained

directly
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◦ proof of formulas 7 and 8

-First, Let us consider the Euler’s formula

usage in complex-number expressed in the polar form  
and in complex phasor notation.
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