

2013-1-WKU-IP-C03 Database / Entity Relationship Model	
02. ER Model Basics	
 Entity: Real-world object distinguishable from other objects. An entity is described (in DB) using a set of attributes. Entity Set: A collection of similar entities. E.g., all employees. All entities in an entity set have the same set of attributes. (Until we consider ISA hierarchies, anyway!) Each entity set has a key. Each attribute has a domain. 	

2013-1-WKU-IP-C03 Database / Entity Relationship Model 03. Jargon related to ER Model • Data Model = Data Map + Entity List • Subject Area: The Target of Modeling • Entity, Entity Set • Relationship, Relationship Set Identifier = Key • Primary Key • Foreign Key Alternate Key · Candidate Key • Attribute Basic Attribute • Design Attribute • Primary Key • Derived Attribute • ex: sum, number

2013-1-WKU-IP-C03 Database / Entity Relationship Model

06. Tips

• Several kinds of integrity constraints can be expressed in the ER model: key constraints, participation constraints, and overlap/covering constraints for ISA hierarchies. Some foreign key constraints are also implicit in the definition of a relationship set.

- Some constraints (notably, functional dependencies) cannot be expressed in the ER model.
- Constraints play an important role in determining the best database design for an enterprise.

2013-1-WKU-IP-C03 Database / Entity Relationship Model

06. Tips

• ER design is subjective. There are often many ways to model a given scenario! Analyzing alternatives can be tricky, especially for a large enterprise. Common choices include:

• Entity vs. attribute, entity vs. relationship, binary or n-ary relationship, whether or not to use ISA hierarchies, and whether or not to use aggregation.

• Ensuring good database design: resulting relational schema should be analyzed and refined further. FD information and normalization techniques are especially useful.