Part III 회귀분석의 제 문제

제 7 장 모형의 설정 및 검정

- 1. 모형설정 오류(model misspecification):
- 실증분석에서 회귀모형이 잘못 설정되어 이를 통해 종속변수의 체계적인 움직임을 제대로 분석할 수 없는 경우
- 오류발생 원인
 - a) 사용변수의 측정오차가 불가피한 경우 (measurement error)
 - b) 종속변수와 설명변수 간의 관계식 자체가 잘못 설정된 경우(wrong function form)
 - c) 포함되어야할 적절한 설명변수가 모형에서 제외된 경우:누락변수(omitted variable)
 - d) 부적합한 설명변수가 모형에 포함된 경우(irrelevant variable)
 - e) 설명변수간의 공선성(colinearity) 문제가 발생하는 경우
 - 1) 누락변수 (omitted variable)의 경우

- 적절한 모형: $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$
- → 설명변수 X_{2i} 가 누락된 누락변수의 문제를 가진 모형: $Y_{i} = \alpha^{*} + \beta^{*}_{1} X_{1i} + \epsilon^{*}_{i}$
- 누락변수에 의해 야기될 수 있는 문제점:
- a) 적절한 모형하에서 회귀계수 β₁ (β₂)의 추정은 X_{2i} (X_{1i})의 값을 일정하게 유지 (통제, control)시키는 조건하에서 X_{1i} (X_{2i})가 Y 에 미치는 영향 정도를 계측한다. 그러나, 누락변수의 문제를 포함한 모형하에서 추정된 β₁(β₂)의 추정은 X_{2i} (X_{1i})의 값을 통제하지 못한 상태에서 도출된 것이다.
- b) 잘못된 제약($\beta_2=0$)을 실제모형에 부과한 것과 같은 문제를 야기 한다
- ightarrow 잘못 설정된 모형하에서 그 오차항은 $ho^*_i = eta_2 \ X_{2i} + \epsilon_i$ 의 의미를 갖게되어 선형회귀모형의 기본가정인 $E[\epsilon^*_i] = 0$ 을 충족시킬 수 없다. 따라서 최소자승법을 적용하면 그 추정치가 BLUE(최량선형불편추정량)이 되지 못한다:
 - \rightarrow 최소자승법에 의한 $β^*_1$ 의 추정량을 산출하면,

 $\beta_1^* = [\sum (X_{2i} - X_2) (Y_i - Y) / \sum_{i=1,n} (X_{2i} - X_2)^2] = \beta_1 + \beta_2 [Cov(X_{1i}, X_{2i}) / Var(X_{1i})]$

 β_2 [Cov(X_{1i}, X_{2i})/Var(X_{1i})] \neq 0 (누락변수 편의: omitted variable bias)이고 따라서 $E(\beta^*_1) \neq \beta^*_1$ 이기 때문에 β^*_1 는 편의추정량(biased estimator)이 된다.

- ⇒ 누락변수 편의, β₂ [Cov(X₁i, X₂i)/Var(X₁i)],는 표본크기가 아무리 커도
 사라지지 않기 때문에 일치성(consistency)의 특성도 잃게 된다
- c) 누락변수의 오류는 β^*_1 의 추정량의 분산크기를 감소시켜 일반적인 t-통계치를 이용한 가설검정이나 신뢰구간 설정에서 잘못된 결론을 유발 시킬 수 있다
- 2) 부적절한 변수(irrelevant variable)의 경우
- 적절한 모형: $Y_i = \alpha + \beta_1 X_{1i} + \epsilon_i$
- → 부적절한 설명변수 X_{2i} 가 포함된 모형: $Y_i = \alpha^* + \beta^*_1 X_{1i} + \beta^*_2 X_{2i} + \epsilon^*_i$
- 부적절한 변수의 포함에 의해 야기될 수 있는 문제점
 - a) 회귀계수(β^{*}₁)의 추정량에 편의(bias)가 나타나지 않으므로 불편의성에는 영 향을 주지 않는다
 - b)회귀계수 추정량의 분산, $var(\beta^*_1)$ 의 크기가 크게 나타나 효율성이 떨어진다
 - c) 특히 부적절하게 포함된 변수(X_{2i})가 다른 설명변수(X_{1i})와 서로 밀접한 상관 관계가 있는 경우에는, 추정량이 분산이 매우 커져 검정통계치인 t-통계량 이 작아짐에 따라 원래 설명력이 높은데도 불구하고 유의성이 낮게 나타나,

귀무가설 H_0 : $β^*_1 = 0$ 을 기각하기 어려워진다.

	누락변수의 경우	부적합한 변수의 경
		우
회귀계수의 추정량	편의성(bias) 및 비일관성	불편의성
	(inconsistency)	(unbiasedness) 유지
회귀계수의 분산값	작아짐 (하향편의)	커짐(상향편의로 비
		효율성: inefficiency)
오차항의 분산값	커짐(상향편의)	거의 변동 없음
t-통계량	불확실	대체로 하락
검정 및 구간추정의 결론	무의미	의미는 유지되나 귀
		무가설(H ₀ : β* ₁ = 0)을
		부당하게 채택할 가
		능성이 커짐

- 2. 모형설정 검정법(specification test)
- 실증분석 결과를 이용하여 결론을 도출하기 전에 사용된 계량모형이 제대로 설정되었는지를 확인하는 작업이 선행되어야 한다.
- → 변수사이의 관계를 선형으로 분석 가능한지 또는 회귀모형의 선정이 올바른지에 대해서 점검이 필요하다.
- 1) 유의성 검정법
- 주로 설명변수의 적합성 여부를 파악하기위해 사용된다
- 설정 모형: $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k X_{ki} + \epsilon_i$
- → 변수 X_{ki} 가 이 모형에 포함되어야 하는지 검정하기 위한 가장 쉬운 방법이 변수에 대한 유의성 검정을 통해 유의성이 낮은 변수를 가려내는 방법
 - \Rightarrow t-통계치 (β_k/s_β) 를 이용하여, H_0 : $\beta_k=0$ 에 대한 유의성을 검정
 - □ 여러 개의 변수(X_a, X_b, X_c)가 동시에 모형에 포함되어야 하는지 여부를
 검정: F-검정량을 이용하여, H₀: β_a= β_b = β_c = 0 을 판정,
- 주의할 사항은 t-검정 또는 F-검정을 실행하기전에 핵심적인 설명변수로 구성

된 기본모형에 대한 정당한 이론을 근거로 한 확신이 있어야 한다.

- 2) LM(Lagrnage Multiplier) 검정법
- 기존의 회귀모형에서 누락된 변수가 있는지를 검정하기 위해 적용된다
- 설명변수의 수가 서로다른 두개의 모형중에서 하나를 선택하는 방법으로 제약 (restriction)이 반영된 모형을 귀무가설로 하고 제약이 없는 모형을 대립가설로 하여 서로 비교하여 결정한다,
- ightharpoonup 설정 모형 $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$ 에서 X_{2i} 변수가 부적합 변수인지 아니면 적합한 변수인지를 분석하고자 한다:
 - ⇒ 제약: β₂ = 0
 - \Rightarrow 검정 가설, H_0 : $\beta_2=0$ $(Y_i=\alpha+\beta_1X_{1i}+\epsilon_i)$ vs. H_0 : $\beta_2\neq0$ $(Y_i=\alpha+\beta_1X_{1i}+\beta_2X_{2i}+\epsilon_I)$
 - □ 검정 통계량, LM 통계량 = nR² (n: 표본관측치의 수, R² 는 대립가설하
 의 모형에서 도출한 결정계수의 값)
 - \Rightarrow LM ~ χ^2 (j) (j 는 자유도: 제약식의 수)

- 3) 정보 기준(information criteria)
- 모형선정 방법으로 모형의 설명력과 모형의 크기를 동시에 고려하는 방법
- → 새로운 변수의 도입이 모형의 설명력을 향상시키나 반면에 모형의 크기를 확대시켜 자유도의 감소를 초래 한다. 정보기준은 설명변수의 추가에 따른 장단점을 비교하여 적절한 모형을 선택하도록 하는 지표로 사용된다.
- AIC (Akaike Information Criterion)와 SIC (Schwarz Information Criterion)
- \rightarrow AIC = log(RSS/n)+(2k/n), SIC = log(RSS/n)+[log(n)k/n]
 - ⇒ 두가지 기준은 그값이 적을수록 모형의 적합도가 높다는 것을 나타낸
 다
 - ⇒ 설명변수를 추가하면 잔차제곱합(RSS)이 작아져서 정보기준값을 감소시켜, 모형의 설명력을 높이는 통계적 이익(statistical benefit)을 얻을수 있으나, 동시에 모형추정 비용을 추가시킴으로써 통계적 비용 (statistical cost)를 증가시켜 정보기준의 값을 상승 시킨다.

4) 모형의 비선형성 검정

- 모형설정오류는 일반적으로 두가지 경우, 누락변수와 부적합한 변수에 의해

설명되어 져 왔으나, 실제로 오류의 요인은 매우 광범위하며 그중 매우 흔한 설정오류를 범하게 되는 경우가 함수형태 자체를 잘못 설정하는 상황이다

→ 경제이론이나 가설을 계량분석이 가능한 구체적 함수관계로 표현하는 과정에
서 가장 편리한 선형함수모형의 적용이 적절함에도 불구하고 이를 무시하고 비선
형모형을 고수할 경우 설정오류가 발생할 수 있다

- 설명변수의 비선형항을 모형에 포함시킬 것인지의 여부를 검정하기 위해 LM 검정법을 적용할 수 있다.
- \rightarrow 회귀모형: $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$ 에서 비선형항 X^2_{1i} 와 X^2_{2i} 변수가 적합 변수인지 아니면 부적합한 변수인지를 LM 검정법을 이용하여 분석하고자 한다:
 - ⇒ 최소자승법을 이용하여 기존의 회귀모형을 추정, 잔차를 도출한다:

$$e_i \, = \, Y \, - \, \alpha^{\hat{}} \, - \, \beta^{\hat{}}_1 X_{1i} \, - \, \beta^{\hat{}}_2 X_{2i}$$

○ 잔차항 e_i 를 상수항과 설명변수 X_{1i} X_{2i} X²_{1i} X²_{2i} 에 대해 회귀분석을 하여, 결정계수 R² 값을 구한다

$$e_i \,=\, \gamma_0 \,+\, \gamma_1 X_{1i} \,+\, \gamma_2 X_{2i} \,+\, \gamma_3 X^2_{1i} \,+\, \gamma_4 X^2_{2i} \,+ \mu_i$$

 □ 비선형변수가 설명력이 있다면, 잔차 e_i 는 이들과 상관관계를 가지고 있어야 한다. 이를 점검하기위해 LM 검정법을 이용하여 귀무가설 H₀:

$$\gamma_3 = \gamma_4 = 0$$

LM = $n R^2 \sim \chi^2(j)$ (자유도 j=2: 제약식의 수)

□ 만일 귀무가설이 기각되면 종속변수와 설명변수사이에 비선형관계가 존재함을 의미한다.