2-3-2 Silicate structure

 For the given stable radious of Si and O, if we calculate the
coordination numbers of Si and O, they are 4 and 2, respectively.

« To satisfy the CN ‘4’ for Si ion, Si is located on the center of
tetrahedron and O atom is located on the vertex of it.

* This tetrahedron would prefer to share the vertex with other

tetrahedron rather than the side or face of it
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Figure 2-7 shows the classcification of the Si-O
tetrahedron as the number of sharing vertex
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o One of the example for orthosilicate is ‘olivine, (Mg,
Fe)2Si04’ .

o Its crystal structure is given in the Fig. 2-19 and each
tetrahedron is separated from each other.

o Positive Mg ions are surrounded by an octahedron that
was formed by the 6 negative ions.
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o If the number of sharing vertex is ‘2’, then the silicate
structure is called by ‘metasilicate’ and the ratio O/Si is ‘3’.

o The metasilicate structure is given in Fig. 2-20.
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o If the number of sharing vertex is ‘5/2’, then the silicate
structure is called by ‘double chain silicate’ and the ratio
O/Si1is ‘2.75’.

o The double chain silicate structure is given in Fig. 2-21(a).
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o If the number of sharing vertex is ‘3’, then the silicate
structure is called by ‘sheet silicate’ and the ratio O/Si is
‘2.5,

o The sheet silicate structure is given in Fig. 2-22(a) and (b).
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2-4. Amorphous oxide structure

o Amorphous structure is randon network structure.
o There is no symmetric or regular structure.

o There are suggested 4 rules to form the oxide amorphous.
1. Each oxide ions should be combined with less than
2 positive ions.

2. The coordination number of oxide ion surrounding the
central positive ion is less than ‘4.

3. The oxide polyhedron should share not the side or face
but the vertex.

4. To form the 3-D structure, each polyhedron should share
at least 3 vertices.



Network former : the positive ions that can make
continuously network like B, Si, Ge, P, V, As, Sb, etc.

The CN for B is ‘3" and that for the others is ‘4’.

Therefore, the possible oxide polyhedrons are triangle
and tetrahedron.

There are intermediate (Al, Pb, Zn, Be) and network
modifier (Zn, Ba, Ca, Na, K).
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For pure S102 glass network structure, each Si1 atom 1is
surrounded by the 4 oxide ions and each oxide ion is connected
with the 2 Si ions, so there is no dangled binding.

Therefore, the quartz fused by the pure SiO2 has very high glass
transition temperature and it is very strong glass against the
thermal impact.

If the glass transition temperature(softening temp.) is too high,
the manufacturing cost will be very high.

To decrease the glass transition temperature, we need to make a
weak binding by breaking the tetrahedron network using network
modifier (Na20, CaO, B203, etc.)
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Homeworg #2.

o Solve the following problems.

o Exercise #2-3,5, 7, 8, 14, 17, 21, 27
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Chapter 3. Lattice and Symmetry
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3-1. Lattice and Unit Cell

o The crystal is a solid system that has periodic atomic
arrays.

o So the crystal system has symmetry in the periodic
regularity.
o There are several symmetry factors.

o At first, 2-dimensional atomic arrays will be discussed
and then the discussion will be extended to 2-
dimensional atomic arrays.

o Fig. 3-1 shows the 2-dimensional crystal that has a layer
of carbon atoms to make graphite.




O i

N
w

-

@

o
b

=
/\

Plaay:

(@)

=

« Al the carbon atoms have
coordination number ‘3".
* But, number of type to array the
atoms are ‘2, A and B that have
different direction for array of
neighboring atom.
« The atoms located on the N, Q
sites are on the same situation as
atom ‘A.
* Also, the atoms located on the M,
P sites are on the same situation as
atom B’
 There is ‘unit cell(EFr$|=E)" that is
defined by a parallelogram(d gl A}
BH3d) OXAY in a 2-dimension.
* The unit cell will be extended to

a parallelepiped(@ 3l S ™H*X||) for
3-dimension.



o In a 2-dimensional space, mesh or

net can be defined by the array of the  *® . .
points that have  periodic . o
surrounding. . . .
o In 3-dimensional space, the periodic
structure is called by lattice and ) )
each points are called by lattice ° * .
point. . »
o Figure 3-2 is the lattice that can . . .
be acquired from the array of . .
carbon atoms of Fig. 3-1. . . .

o The ’translational symmetry’ is
defined by the periodic symmetry in HH;O" A
the lattice as shown in Fig. 3-2. i
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o The ‘basis’ is defined by the group of atoms that formed
the whole crystal by locating at all lattice points.

o Figure 3-3 shows that the whole crystal structure(3-3(c))
can be expressed by the combination of lattice

points (3-3(a)) and basis (3-3(b)).
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o As shown in Fig. 3-4, we can make the various
parallelograms as we connect the lattice points.

o By moving these parallelograms parallel, the whole space
can be occupied.

o There is ‘unit cell’ that is defined by a parallelogram
in a 2-dimension and a parallelepiped for 3-dimension.
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o ‘The primitive unit cell’ is defined by the unit cell that
has only one lattice point.

o For example, the parallelogram ABCD in Fig. 3-4 is
the primitive unit cell.

o But, for the parallelogram ALOD, it is ‘nonprimitive
unit cell, because it has more than one lattice point.




expressed by two sides a and b, and the angle between those
sides as shown in Fig. 3-5(a).

For 3-dimensional space, the unit cell will be extended to a
parallelepiped, the origin of coordination system will be
vertex of parallelepiped and the sides of parallelepiped will be
the x, y, z axis of crystal.

As shown in Fig. 3-5(b), angle a, B, y are called by ‘axial angle’,
the space a, b, and ¢, between lattice points along x, y, and z-
axis are called by ‘lattice parameter’.
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o For example, if we figure out the unit cell and lattice of
CsCl(cesium chloride), already discussed in Fig. 2-14,
then it is cubic unit cell with a=b=c and a=p=y=90" .
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