Chapter 04 빛의 전파

4.1	페르마(Fermat)의 원리 ······	43
4.2	반사와 굴절의 법칙	47
	프레넬(Fresnel) 방정식	49
4.4	브루스터 각(Brewster angle) ······	60
4.5	표면파(Evanescent wave) ·····	62
4.6	내부 전반사에서의 위상변화	65
□ 연립	슼문제	75

- 빛의 전파는 여러 경우에 대하여 생각하여 볼 수가 있을 것이다.
- 예를 들어, 동일 매질내에서 진행하는 경우, 또는 서로 다른 두 매질의 경계면을 통하여 진행하는 경우 등이 있으며 동일 매질이라 하더라도 매질의 종류에 따라서 일어나는 현상은 매우 다르다.
- 또한, 빛이 서로 다른 두 매질의 경계면을 통하여 진행하는 경우에는 경계면에서 반사 와 굴절 현상이 일어나는데
- 이 장에서는 빛의 전파에 대한 일반적인 현상에 대해서 간단히 다루고자 한다.

4.1

페르마(Fermat)의 원리

- Fermat의 원리는 임의의 두점 사이에서 빛이 이동하면서 취한 경로는 항상 최소 시간 이 걸리는 경로임을 설명하는 원리
- 빛의 직진성 및 반사와 굴절의 법칙이 Fermat의 원리로부터 유도될수 있으며
- 기하 광학적 현상의 분석에 매우 유용함
- 또한, 여러 종류의 매질로 이루어진 계에 있어서, 빛은 각각의 매질내에서는 직선으로 이동한다 하더라도, 전체 시간을 최소화하는 경로를 따라 이동함을 설명해주고 있다.

그림 4.1에서와 같이 빛이 2개의 서로 다른 매질의 경제면을 지나 점 P에서 점 Q로 진행하는 경우에 매질 I에서의 통과 시간(t_1)은 $t_1 = s_1/v_1$ 이며, 매질 II에서의 통과 시간(t_2)은 $t_2 = s_2/v_2$ 이다.

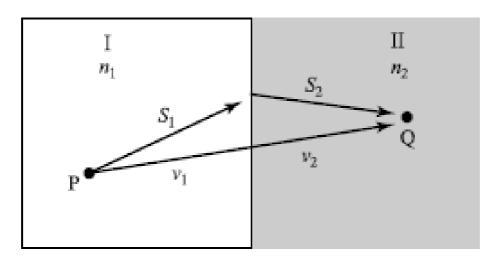


그림 4.1 페르마 원리

따라서 점 P에서 점 Q로 가는데 걸리는 전체 시간(t)은

$$t = \frac{s_1}{v_1} + \frac{s_2}{v_2} \tag{4.1.1}$$

• 점 P에서 점 Q까지 가는데 소요된 시간이 최소화되는 조건은 시간을 변위 x 로 미 분하여

$$\frac{dt}{dx} = \frac{d}{dx} \left(\frac{s_1}{v_1} + \frac{s_2}{v_2} \right) = 0 \tag{4.1.2}$$

을 만족시키는 경우이다. 만일 굴절률이 n_1, n_2, \dots, n_n 인 매질 속을 각각 s_1, s_2, \dots, s_n 만큼 통과하여 P에서 Q까지 이동하였다면, 통과하는데 걸린 총 시간(t)은

또한 매질의 굴절률이 연속적으로 변하는 경우에 빛이 지나온 총 경로

$$S = \int_{P}^{Q} n(s) ds \tag{4.1.4}$$

3 여제 1

페르마의 원리를 이용하여 반사의 법칙을 유도하라.

 $\sqrt[p]{\text{oh}}$ 그림 4.2에서 빛이 P_1BP_2 를 따라서 진행한 빛의 경로를 S라 하면,

$$S = n_i \; \overline{P_1 B} + n_i \; \overline{B P_2} = n_i \; \sqrt{h^2 + x^2} + n_i \; \sqrt{h^2 + (a - x)^2}$$

여기에 페르마의 원리를 적용하기 위하여 미분을 취하여 정리하면

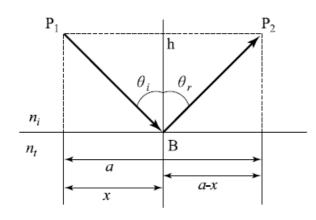


그림 4.2 반사의 법칙을 설명하기 위한 그림

$$\frac{dt}{dx} = \frac{1}{c} \frac{d}{dx} \left(\sum_{i=1}^{2} n_i s_i \right) = 0 = n_i \frac{x}{\sqrt{h^2 + x^2}} - n_i \frac{a - x}{\sqrt{h^2 + (a - x)^2}}$$

$$\therefore \sin \theta_i = \sin \theta_r \qquad \therefore \quad \theta_i = \theta_r$$

페르마의 원리를 이용하여 반사의 법칙이 유도됨을 알 수가 있다.

에제 2

페르마의 원리를 이용하여 스넬(Snell)의 굴절법칙을 유도하라.

 $\sqrt[4]{\text{oht}}$ 그림 4.3에서와 같이 빛이 서로 다른 두 매질의 경계면을 지나, P_1 에서 점 P_2 로 가는 경우에 빛이 취한 경로를 S라 하면,

$$\frac{dt}{dx} = \frac{1}{c} \frac{d}{dx} \left(\sum_{i=1}^{2} n_i \, s_i \right) = 0$$

$$S {= \, n_i \, \overline{P_1 B} \, + \, n_t \, \overline{B P_2}} {= \, n_i \, \sqrt{h^2 + x^2} \, + \, n_t \, \sqrt{b^2 + (a - x)^2}}$$

페르마의 원리를 적용하여 정리하면,

$$\frac{d}{dx}(S) = 0 = n_i \frac{x}{\sqrt{h^2 + x^2}} - n_t \frac{a - x}{\sqrt{b^2 + (a - x)^2}}$$

$$\therefore n_i \sin \theta_i = n_t \sin \theta_t$$

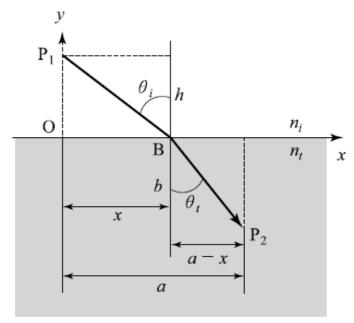


그림 4.3 굴절의 법칙

Fermat의 원리로부터 Snell의 굴절 법칙이 유도됨을 알 수가 있다

에제 3

굴절률이 n_i 인 매질 속에 물체가 놓여 있다(그림 4.4참조). 물체가 두 물질의 경계면에서 y_i 만 큼 떨어져 있다면, 굴절률이 n_t 인 물질에서 바라보았을 때의 깊이 y_t 는 얼마인가?

ᢧ 해답 굴절에 대한 스넬의 법칙으로부터

(a)
$$n_i \sin \theta_i = n_t \sin \theta_t$$

물체 길이의 수평성분은 동일하므로

(b)
$$y_i \tan \theta_i = y_t \tan \theta_t$$

(a)를 (b)로 나누면, $n_i \cos \theta_i/y_i = n_t \cos \theta_t/y_t$ 이 되므로

$$y_t = y_i \frac{n_t}{n_i} \frac{\cos \theta_t}{\cos \theta_i}$$

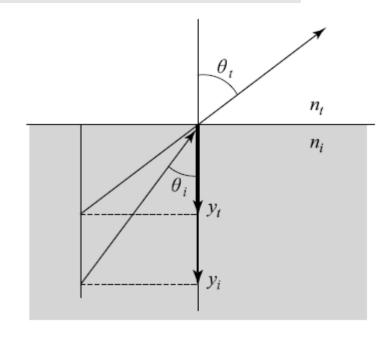


그림 4.4 매질의 굴절 효과

 $n_i > n_t$ 이라면, 즉 $n_i = 4/3$ (=물의 굴절률)이고, $n_t = 1$ (=공기의 굴절률)인 경우에 $n_t/n_i = 3/4$ 이 되며, 옆에서 물체를 보았을 때에 각도에 따라 크기가 달라지게 하는 요인이 된다.

• 두 개의 서로 다른 광학적 매질의 경계면에 평면 조화파가 입사하는 경우에 조화파의 일부는 경계면으로부터 반사되고, 일부는 투과된다(그림 4-5참조).

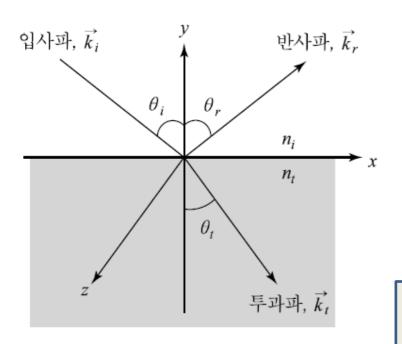


그림 4.5 반사와 굴절의 법칙

입사파:
$$e^{i(\overrightarrow{k_i} \cdot \overrightarrow{r} - \omega t)}$$
 (4.2.1)

반사파:
$$e^{i(\overrightarrow{k_r} \cdot \overrightarrow{r} - \omega t)}$$
 (4.2.2)

투과파:
$$e^{i(\vec{k_t}\cdot\vec{r}-\omega t)}$$
 (4.2.3)

여기서 r은 경계면상에서의 임의의 벡터이다.

경계면상의 모든 점 및 임의의 시간에 대해서 상호 밀접한 관계를 가지기 위해서는 위상을 나타내는 인자 $\phi = (\vec{k} \cdot \vec{r} - \omega t)$ 이 경계면상에서 입사파, 반사파 및 투과파에 대해서 서로 같아야 한다.

시간 인자(time factor)들은 서로 같으므로 경계면에서 이들 3파의 위상이 같기 위해서는

$$\overrightarrow{k_i} \cdot \overrightarrow{r} = \overrightarrow{k_r} \cdot \overrightarrow{r} = \overrightarrow{k_t} \cdot \overrightarrow{r}$$
 (경계에서) (4.2.4)

이는 입사, 반사 및 투과파의 전파벡터 $\vec{k_i}$, $\vec{k_r}$, $\vec{k_t}$ 들이 동일 평면 내에 있고 경계면에 대한 이들의 투영이 서로 같음을 의미한다. \vec{r} 을 단위벡터 (\hat{n}) 를 사용하여

 $\vec{r} = -\hat{n} \times (\hat{n} \times \vec{r})$ 와 같이 표현이 가능하다(그림 4.6참조).

따라서 식 (4.2.4)에서의 $\overrightarrow{k_i} \cdot \overrightarrow{r}$ 은

$$\overrightarrow{k_{i}} \cdot \overrightarrow{r} = -\overrightarrow{k_{i}} \cdot [\widehat{n} \times (\widehat{n} \times \overrightarrow{r})] = -(\overrightarrow{k_{i}} \times \widehat{n}) \cdot (\widehat{n} \times \overrightarrow{r}) \qquad (4.2.5)$$

$$\overrightarrow{k_{r}} \cdot \overrightarrow{r} = -(\overrightarrow{k_{r}} \times \widehat{n}) \cdot (\widehat{n} \times \overrightarrow{r}), \quad \overrightarrow{k_{t}} \cdot \overrightarrow{r} = -(\overrightarrow{k_{t}} \times \widehat{n}) \cdot (\widehat{n} \times \overrightarrow{r}) \qquad (4.2.6)$$

$$\overrightarrow{n} \times \overrightarrow{r} = -\overrightarrow{n} = -\overrightarrow{k_{i}} \times \overrightarrow{r} = -\overrightarrow{n} = -\overrightarrow{k_{i}} \times \overrightarrow{r} = -\overrightarrow{k_$$

식 (4.2.5)과 식 (4.2.6)으로부터

$$\overrightarrow{k_i} \times \widehat{n} = \overrightarrow{k_r} \times \widehat{n} = \overrightarrow{k_t} \times \widehat{n}$$
(4.2.7)

그림 4.6 법선 단위벡터 (\hat{n}) 와 위치 벡터 (\hat{r}) 사이의 관계

편의상 xz - 면이 경계면이 되고, xy - 면이 \vec{k} - 벡터가 놓여있는 입사면이 되도록 좌표계를 정하자(그림 4.5 참조). 이때에 y - 축(경계면에 수직임)과 각각의 파 벡터들이 이루는 각을 각각 θ_i , θ_r 및 θ_t 라고 하면 식 (4.2.7)은

$$k_i \sin \theta_i = k_r \sin \theta_r = k_t \sin \theta_t$$

$$k_i = n_i k_0, \quad k_r = n_r k_0, \quad k_t = n_t k_0$$

$$(4.2.8)$$

입사파와 반사파는 같은 매질(y>0)내에서 진행을 하므로 $n_i=n_r$ 인 관계가 성립한다.

 $k_i \sin \theta_i = k_r \sin \theta_r \Rightarrow \theta_i = \theta_r$: 스넬의 반사법칙.

입사각과 반사각이 같음을 알 수 있다. 마찬가지로 굴절에 대해서는

 $n_i \sin \theta_i = n_t \sin \theta_t$: 스넬의 굴절법칙

st 경계면에서 만족해야 될 조건인 $\overrightarrow{k_i}$ \cdot $\overrightarrow{r}=\overrightarrow{k_r}$ \cdot $\overrightarrow{r}=\overrightarrow{k_t}$ \cdot \overrightarrow{r} 에 대한 다른 설명법:

우선
$$\overrightarrow{k_i} \cdot \overrightarrow{r} = \overrightarrow{k_r} \cdot \overrightarrow{r} = \overrightarrow{k_t} \cdot \overrightarrow{r}$$
을 계산하면,
$$\overrightarrow{k_i} \cdot \overrightarrow{r} = \overrightarrow{k_r} \cdot \overrightarrow{r} = \overrightarrow{k_t} \cdot \overrightarrow{r}$$
 (4.2.9)
$$= k_{ix} x + k_{iy} y + k_{iz} z = k_{rx} x + k_{ry} y + k_{rz} z = k_{tx} x + k_{ty} y + k_{tz} z$$

와 같이 된다. 하지만 입사면의 정의로부터 입사면에서 z=0이므로 위식은 $k_{ix}x+k_{iy}y=k_{rx}x+k_{ry}y=k_{tx}x+k_{ty}y$ 이 된다. 또한 경계면에서 y=0이므로, 식 (4.2.9)의 값은 $k_{ix}x=k_{rx}x=k_{tx}x$ 이 된다. 따라서 $k_{ix}=k_{rx}=k_{tx}$ 와 같은 결과를 얻을 수 있다. 이는 $k_{i}\sin\theta_{i}=k_{r}\sin\theta_{r}=k_{t}\sin\theta_{t}$ 임을 의미한다. 이것으로부터 입사면에 있는 파수 벡터의 수평성분은 모두 같음을 알 수 있다.