

Fourier Representation

■ Fourier Transforms

푸리에 변환은 신호의 주기성, 시간의 연속성 등에 따라 변환식의 형태가 나누어짐

시간상	주기	비주기
성질		
연속시간	퓨리에 급수 (FS)	퓨리에 변환 (FT)
이산시간	이산시간 퓨리에 급수 (DTFS)	이산시간 퓨리에 변환 (DTFT)

Summary of Fourier Transform

이산시간 신호

 $x[n] = \sum_{n=< N>} X[k]e^{jk\Omega_0 n}$

$$X[k] = \frac{1}{N} \sum_{n=} x[n] e^{-jk\Omega_0 n}$$

$$x[n] \xrightarrow{DTFS; \quad \Omega_0} X[k]$$

 $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega$

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

$$x[n] \leftarrow DTFT \rightarrow X(e^{j\Omega})$$

연속시간 신호

$$x(t) = \sum_{k=-\infty}^{\infty} X[k] e^{jk\omega_0 t}$$

$$X[k] = \frac{1}{T} \int_{0}^{T} x(t)e^{-jk\omega_{0}t} dt$$

$$x(t) \longleftarrow FS; \omega_0 \longrightarrow X[k]$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$x(t) \longleftarrow FT \longrightarrow X(j\omega)$$

비주기신호

신 호

Fourier Representation: DTFS

• Discrete Time Fourier Series of N-Periodic Signal

$$x[n] = \sum_{n=\langle N \rangle} X[k] e^{jk\Omega_0 n}, \Omega_0 = \frac{2\pi}{N}$$
$$X[k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\Omega_0 n}$$

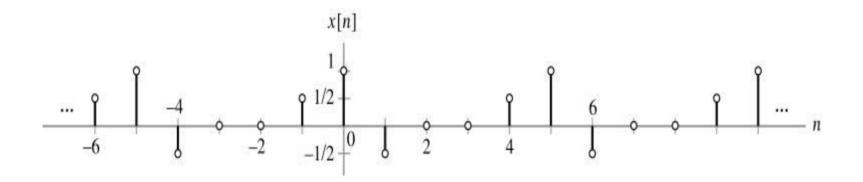
$$DTFS; \quad \Omega_0$$

$$x[n] \longleftrightarrow X[k]$$

• Fourier Coefficient X[k]

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\Omega_0 n}$$

Example: DTFS



$$\begin{split} N &= 5; \qquad \Omega_0 = 2\pi/5; \qquad odd \qquad symmetry \\ X[k] &= \frac{1}{5} \sum_{n=-2}^{2} x[n] e^{-jk2\pi n/5} \\ &= \frac{1}{5} \left\{ x[-2] e^{jk4\pi/5} + x[-1] e^{jk2\pi/5} + x[0] e^{j0} + x[1] e^{jk2\pi/5} + x[2] e^{-jk4\pi/5} \right\} \\ &= \frac{1}{5} \left\{ \frac{1}{2} e^{jk2\pi/5} + 1 - \frac{1}{2} e^{jk2\pi/5} \right\} = \frac{1}{5} \left\{ 1 + j \sin(k2\pi/5) \right\} \end{split}$$

Fourier Transform

- DTFS 개념을 적용하면 다른 경우의 푸리에 변환들을 이해가능
- 비주기 신호는 주기신호 경우의 주기가 무한대라고 가정하면 주기신호의 Fourier 급수를 이용, 변환 가능

$$N,T$$
 \longleftarrow ∞

• 이산합은 적분으로 변환

$$\sum$$

Fourier Transform

• 푸리에 변환 계수의 크기와 위상 분석

- 신호의 푸리에 변환을 통한 주파수 성분 분석
 - •신호 속에 포함된 특정주파수 성분이 어느정도의 크기로 포함되어 있는지 분석가능
 - •선형시스템의 해석에서 입력신호의 주파수성분에 따라 출력에서의 성분값이 영향을 받음 : 주파수 응답

Continuous-Time Fourier Series: Periodic Case

- Continuous-Time Fourier Series : CTFS
- □ DTFS 에서의 주기 N 대신 주기 T 로 바꿈.
- □ 푸리에 계수 에서 이산합대신 적분 적용

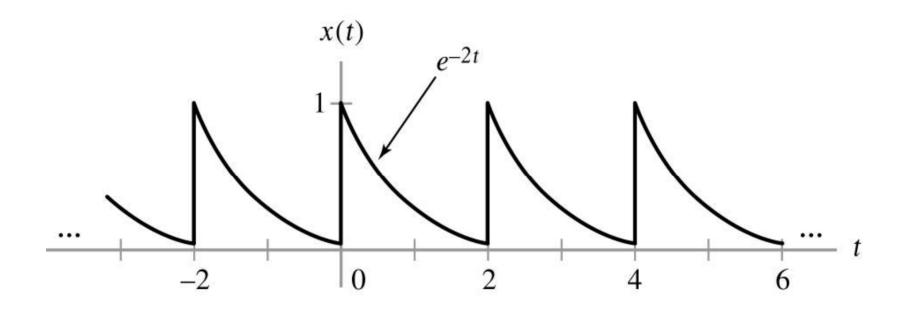
$$x(t) = \sum_{k=-\infty}^{\infty} X[k]e^{jk\omega_0 t}, \omega_0 = \frac{2\pi}{T}$$

$$X[k] = \frac{1}{T} \int_{0}^{T} x(t)e^{-jk\omega_{0}t}dt$$

$$x(t) \stackrel{FS;\omega_{0}}{\longleftarrow} X[k]$$

Example: CTFS

•연속시간 주기 신호의 푸리에계수



$$X[k] = \frac{1}{2} \int_{0}^{2} e^{-2t} e^{-jk\pi t} dt = \frac{1}{2} \int_{0}^{2} e^{-(2+jk\pi)t} dt$$

Example: CTFS

$$X[k] = \frac{1}{2} \int_{0}^{2} e^{-2t} e^{-jk\pi t} dt = \frac{1}{2} \int_{0}^{2} e^{-(2+jk\pi)t} dt$$

$$= \frac{-1}{2(2+jk\pi)} e^{-(2+jk\pi)t} \Big|_{0}^{2} = \frac{1}{4+jk2\pi} \Big(1 - e^{-(4+jk2\pi)}\Big)$$

$$= \frac{1 - e^{-4}}{4+jk2\pi}$$

Example: CTFS

• Magnitude: 양의 주파수 성분과 음의 주파수 성분 동일

• Phase: 양의 주파수 성분과 음의 주파수 성분의 부호 반대

