

Sets and Subsets

Set

- □ A collection of objects
- $\Box A = \{a_1, a_2, a_3\}$
- $\Box a_2 \in A$: a_2 is an element of A.
- $\Box a_2 \notin A$: a_2 is not an element of A.
- $\Box \ a_i \in A, \ 1 \le i \le 3.$
- □ Another representation
 - $A = \{ x | B(x) \}, B(x): x \text{ has blue eyes}$
 - $A = \{ x \mid x \text{ is an integer and } 1 \le x \le 5 \}$

"the set of all x such that ..."

- Notations of useful sets
 - $\square \mathbf{N} = \{0, 1, 2, \dots\}$ set of natural numbers
 - \Box **Z** = { . . . -2, -1, 0, 1, 2, . . . } set of integers
 - \square **Z**⁺ = {1, 2, 3, ...} set of positive integers
 - R: set of real numbers
 - □ **R**⁺: set of positive real numbers
 - Q: set of rational numbers
 - $\square \emptyset, \{\}$: empty set or null set
 - U: universe or universe of discourse
- Cardinality (size) of a set
 - \square |*A*|: the number of elements in *A* (when it is *finite*).

Subset

□ A set *B* is a subset of *A* ($B \subseteq A$) if every element of *B* is an element of *A*.

$$\Box \ B \subseteq A \iff (\forall x)(x \in B \Longrightarrow x \in A)$$

 $\Box \ B \subseteq A \implies |B| \le |A|$

Theorem

For every set $A, A \subseteq U, A \subseteq A$, and $\emptyset \subseteq A$.

 $(\forall x)(x \in \emptyset \Longrightarrow x \in A)$

Set Equality

 \Box A set *A* is equal to a set *B* iff $(A \subseteq B) \land (B \subseteq A)$.

 $\Box \ A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$

Proper Subset

- □ If $A \subseteq B$ and $A \neq B$, then A is called a proper subset of B ($A \subset B$).
- \Box Note that $A \not\subset A$.
- $\Box \ B \subset A \ \Rightarrow \ |B| < |A|$
- $\Box \ B \subset A \ \Rightarrow \ B \subseteq A$

Power Set

□ If *A* is a set then the power set of *A*, denoted 𝔅(A), is the collection (or set) of all subsets of *A*.

 $\wp(A) = \{ B \mid B \subseteq A \}$

(*Ex*) For a set $A = \{a, b\}$, $\wp(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ $|A| = 2, |\wp(A)| = 2^2$

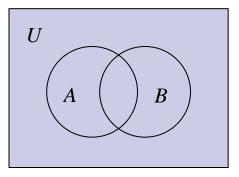
Theorem

In general, $|\wp(A)| = 2^{|A|}$.

Set Operations

Venn Diagram

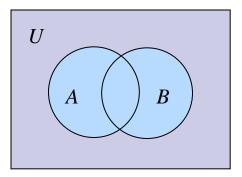
- Represents relations of sets
- Does not constitute a proof



• Let *A* and *B* be two sets, then

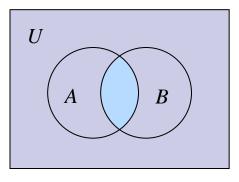
$$\Box A \cup B = \{ x \mid x \in A \lor x \in B \}$$

set union



$$\Box A \cap B = \{ x \mid x \in A \land x \in B \}$$

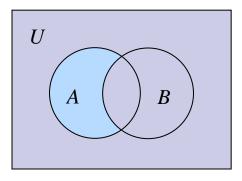
set intersection

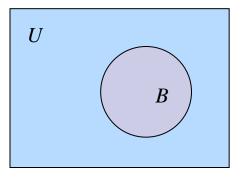


$$\Box A - B = \{ x \mid x \in A \land x \notin B \}$$

set difference

(relative complement of *B* with respect to *A*)

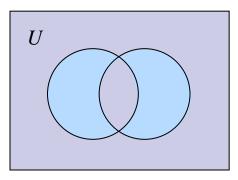




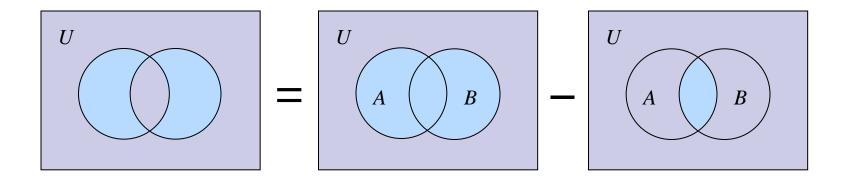
$$\Box \ \overline{B} = U - B = \{ x \mid x \notin B \}$$

complement of a set B

 $\Box A \Delta B = \{ x \mid x \in A - B \lor x \in B - A \}$ symmetric difference (of *A* and *B*)



 $A \Delta B = (A \cup B) - (A \cap B)$



(Note)

$$A \Delta B = \{ x \mid x \in A - B \lor x \in B - A \}$$
$$(A \cup B) - (A \cap B) = \{ x \mid x \in A \cup B \land x \notin A \cap B \}$$
$$A - B = \{ x \mid x \in A \land x \notin B \}$$

$$A \Delta B = \{ x \mid x \in A - B \lor x \in B - A \}$$

$$= \{ x \mid (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \}$$

$$= \{ x \mid ((x \in A \land x \notin B) \lor x \in B) \land ((x \in A \land x \notin B) \lor x \notin A) \}$$

$$= \{ x \mid ((x \in A \lor x \in B) \land (x \notin B \lor x \in B)) \land ((x \in A \lor x \notin A) \land (x \notin B \lor x \notin A)) \}$$

$$= \{ x \mid (x \in A \lor x \in B) \land (x \notin B \lor x \notin A)) \}$$

$$= \{ x \mid (x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \}$$

$$= \{ x \mid x \in A \cup B \land (x \in \overline{B} \lor x \in \overline{A}) \}$$

$$= \{ x \mid x \in A \cup B \land x \in \overline{A} \cup \overline{B} \}$$

$$= \{ x \mid x \in A \cup B \land x \notin A \cap B \}$$

$$= (A \cup B) - (A \cap B)$$

Disjoint Set

□ The sets *A* and *B* are said to be disjoint, or mutually disjoint if $A \cap B = \emptyset$.

Theorem

Let $A, B \subseteq U$.

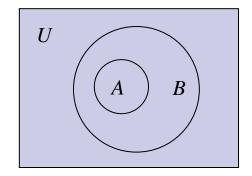
A and B are disjoint iff $A \cup B = A \Delta B$.

Theorem

If A, $B \subseteq U$, then the following are equivalent:

a) $A \subseteq B$ b) $A \cap B = A$

c) $A \cup B = B$ d) $\overline{B} \subseteq \overline{A}$



(Proof)

To prove this theorem we need to show

 $a \Leftrightarrow b \Leftrightarrow c \Leftrightarrow d$ (The proof consists of six parts). Alternatively, however, we can just show the following: $a \Rightarrow b, b \Rightarrow c, c \Rightarrow d, d \Rightarrow a$ (Only four parts)

Part $(A \subset B) \Rightarrow (A \cap B = A)$:

Assume $A \subseteq B$.

Let *x* be an arbitrary element of *A*, i.e., $x \in A$.

Then, $x \in B$ by the definition of subset.

Since $x \in A$ and $x \in B$, we know $x \in A \cap B$ by the definition of set intersection.

(Proof)

Since *x* is an arbitrary element of *A*, every element of *A* is an element of $A \cap B$. [UG]

Hence, by the definition of subset, $A \subseteq A \cap B$.

Let *x* be an arbitrary element of $A \cap B$, i.e., $x \in A \cap B$.

Then, by the definition of set intersection, $x \in A$ and $x \in B$.

Obviously, $x \in A$. $[I_1]$

Since x is an arbitrary element of $A \cap B$, every element of $A \cap B$ is an element of A. [UG]

Hence, by the definition of subset, $A \cap B \subseteq A$.

Therefore, $A \cap B = A$ by the definition of set equality.