
Relations and Functions 
– Part A –
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Cartesian Product

 Definition:
For sets A, B the Cartesian product, or cross product, of A and B
is denoted by A × B and equals {(a, b) | a ∈ A, b ∈ B}.

 Ordered pair
For (a, b), (c, d) ∈ A × B, (a, b) = (c, d) iff a = c and b = d.

 cf. unordered pair: {a, b}

 (a, b) ≠ {a, b}, (a, b) ≠ (b, a)

 Example:
Let A = {a, b, c} and B = {x, y}. Then the cross product A × B is 

{(u, v) | u ∈ A, v ∈ B} = {(a, x), (b, x), (c, x), (a, y), (b, y), (c, y)}.
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Cartesian Product

 Terminologies:
Let A1, A2,…, An be sets. Then the (n-fold) product of A1, A2,…, An

is denoted by A1 × A2 × × An and equals

{(a1, a2,…, an) | ai ∈ Ai, 1 ≤ i ≤ n}.

The elements of A1 × A2 × × An are called n-tuples, although 
we generally use the term triple in place of 3-tuple.

 If (a1, a2,…, an), (b1, b2,…, bn) ∈ A1 × A2 × × An,

then (a1, a2,…, an) = (b1, b2,…, bn) iff ai = bi, 1 ≤ i ≤ n.
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Cartesian Product

 Note:
 Cross product is not commutative, i.e., A × B ≠ B × A.

 Cross product is not associative, i.e., (A × B) × C ≠ A × (B × C).

 A × ∅ = ∅

 If A1 = A2 =  = An, then A1 × A2 × × An = An.
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Cartesian Product

 Theorem: For any sets A, B, and C, 

 A × (B ∪ C) = (A × B) ∪ (A × C)

 (B ∪ C) × A = (B × A) ∪ (C × A)

 A × (B ∩ C) = (A × B) ∩ (A × C)

 (B ∩ C) × A = (B × A) ∩ (C × A).

 Proof : A × (B ∪ C) = (A × B) ∪ (A × C)

(i) To show A × (B ∪ C) ⊆ (A × B) ∪ (A × C)

Let (x, y) be an element of A × (B ∪ C).

Then, by the definition of cross product, x ∈ A and y ∈ B ∪ C.
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Cartesian Product

 Proof :
There are two cases:

 CASE 1: y ∈ B

Since x ∈ A and y ∈ B, (x, y) ∈ A × B.

 CASE 2: y ∈ C

Since x ∈ A and y ∈ C, (x, y) ∈ A × C.

Since one of the two cases is true, either (x, y) ∈ A × B or (x, y) ∈
A × C.

Hence, by the definition of union of sets, (x, y) ∈ (A × B) ∪ (A × C).

That is, (x, y) ∈ A × (B ∪ C) → (x, y) ∈ (A × B) ∪ (A × C).
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Cartesian Product

 Proof :
Since (x, y) was an arbitrary element of A × (B ∪ C), we can 
conclude that every elements of A × (B ∪ C) is an element of (A ×
B) ∪ (A × C).

Therefore, by the definition of a subset

A × (B ∪ C) ⊆ (A × B) ∪ (A × C).

(ii)To show (A × B) ∪ (A × C) ⊆ A × (B ∪ C)

.  .  .  .  .

From (i) and (ii), we conclude that A × (B ∪ C) = (A × B) ∪ (A × C).

�
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Cartesian Product

 A formal Proof : A × (B ∩ C) = (A × B) ∩ (A × C)

No. Formula Rule Just. Taut.
1 (a, b) ∈ A × (B ∩ C) AP
2 a ∈ A ∧ b ∈ (B ∩ C) Def. of × 1
3 a ∈ A T 2 I1

4 b ∈ (B ∩ C) T 2 I2

5 b ∈ B ∧ b ∈ C Def. of ∩ 4
6 b ∈ B T 5 I1

7 b ∈ C T 5
8 a ∈ A ∧ b ∈ B T 3, 6

I2

I9

9 a ∈ A ∧ b ∈ C T 3, 7 I9
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Cartesian Product

 A formal Proof : A × (B ∩ C) = (A × B) ∩ (A × C)

No. Formula Rule Just. Taut.
10 (a, b) ∈ A × B Def. of × 8
11 (a, b) ∈ A × C Def. of × 9
12 (a, b) ∈ A × B ∧ (a, b) ∈ A × C T 10, 11 I9

13 (a, b) ∈ A × B ∩ A × C Def. of ∩ 12 I2

14 (a, b) ∈ A × (B ∩ C) CP 1, 13
→ (a, b) ∈ A × B ∩ A × C

15 (∀y) (a, y) ∈ A × (B ∩ C) UG 14
→ (a, y) ∈ A × B ∩ A × C
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Cartesian Product

 A formal Proof : A × (B ∩ C) = (A × B) ∩ (A × C)

No. Formula Rule Just. Taut.
16 (∀x)(∀y) (x, y) ∈ A × (B ∩ C) UG 15

→ (x, y) ∈ A × B ∩ A × C
17 A × (B ∩ C) ⊆ A × B ∩ A × C Def. of ⊆ 16
18 (a, b) ∈ A × B ∩ A × C AP

(a, b) ∈ A × B ∩ A × C CP 
→ (a, b) ∈ A × (B ∩ C)

A × B ∩ A × C ⊆ A × (B ∩ C) Def. of ⊆

A × (B ∩ C) = A × B ∩ A × C Def. of =

. . . . .

. . . . .

. . . . .
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Relations

 Definitions:
 Let A and B be sets. Then, any subset of A × B is called a relation

between A and B.

 Any subset of A × A is called a (binary) relation on A.

 If A1, A2,…, An are sets then any R ⊆ A1 × A2 × × An is an n-ary
relation on A1, A2,…, An.

 Let R be a binary relation between a set A and a set B. Then, the 
domain of R, designated by D (R), is 

D (R) = {x | (x, y) ∈ R},

and the range of R, designated by R (R), is 
R (R) = {y | (x, y) ∈ R}.
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Relations

 Examples:
 Let A = {a, b, c} and B = {x, y}. If R ⊆ A × B and R = {(b, y), (c, y)}, 

then D (R) = {b, c} and R (R) = {y}.

 If R = {(x, y) | x2 + y2 ≤ 1}, then D (R) = {x | –1 ≤ x ≤ 1}.

 If R = {(x, y) | x + y < 1}, then D (R) = {x | x ∈ R}.

1

1

– 1 

– 1 

0
1

1

0
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Relations

 Theorem: Let S and R be two binary relations. Then,

 D (R ∪ S) = D (R) ∪ D (S)

 R (R ∪ S) = R (R) ∪ R (S)

 D (R ∩ S) ⊆ D (R) ∩ D (S)

 R (R ∩ S) ⊆ R (R) ∩ R (S)

 A counter example for D (R) ∩ D (S) ⊆ D (R ∩ S) :

Let R = {(x, y)} and S = {(x, z)}.

Then, D (R) = {x}, D (S) = {x}, and D (R) ∩ D (S) = {x}.

But, R ∩ S = ∅ and so D (R ∩ S) = ∅.

Therefore, D (R) ∩ D (S) ⊆ D (R ∩ S).
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Relations

 Note:
 For R ⊆ A × B, the number of relations between sets A and B is 

|℘(A × B)| = 2|A × B| = 2|A|⋅|B|.

 ∅ is a relation : the smallest relation.

 The universal relation between sets A and B is A × B.

= A × B – R.

 Definition:
If R is a relation between sets A and B then the converse or 
inverse of R, designated by Rc or R–1, is given by the following:

Rc = {(y, x) | {(x, y) ∈ R}.

R
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Relations

 Theorem: Let R and S be two relations between the sets A and B. 
Then,

 (Rc)c = R

 (R ∪ S)c = Rc ∪ Sc

 (R ∩ S)c = Rc ∩ Sc

 ( )c = 

 D (Rc) = R (R)

 R (Rc) = D (R)

 If R ⊆ S then Rc ⊆ Sc

R cR



Equivalence Relations & Partitions 16

Relations

 Matrix Representation of a Relation
Let A = {a, b, c}, B = {x, y}, and R = {(a, y), (b, x)}. Then the matrix 
representations of R,    , and Rc are the followings:R
















=

0
0
1

0
1
0

RM















=

1
1
0

1
0
1

RM 







==

001
010

)( T
RR MM c
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Relations

 Definition:
Let A, B, and C be sets. Let R be a relation between A and B, and 
S be a relation between B and C. Then the composition of R and 
S, denoted by R ◦ S or RS, is defined as follows:

R ◦ S = {(x, z) | (x, y) ∈ R and (y, z) ∈ S}. 

R
(x, y) ∈ R

S
(y, z) ∈ S

x y zx R y y S z

x R◦S z

R ◦ S
(x, z) ∈ R◦S

A B C
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Relations

 Caution: The composition of relations is not commutative.

R ◦ S ≠ S ◦ R

 Definition:
The identity relation on a set A, denoted by EA, is defined as 
follows:

EA = {(a, a) | a ∈ A}

 Note: For any relation R on a set A,

R ◦ EA = EA ◦ R = R
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Relations

 Example:
A = {a, b, c}, B = {α, β},  C = {x, y, z}

R = {(a, β), (b, α)}, S = {(β, x), (β, z)}

R ◦ S = {(a, x), (a, z)}

Matrix representations:
















=

0
0
1

0
1
0

RM 







=

101
000

SM















=

1
0
0

0
1
0

0
0
1

AEM

SRSR MMM ⋅=















=

0
0
1

0
0
0

0
0
1

 (Note: + as ∨ and · as ∧)
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Relations

 Theorem: Let R, S and T be three relations. Then,

 (R ◦ S) ◦ T = R ◦ (S ◦ T)

 R ◦ (S ∪ T) = (R ◦ S) ∪ (R ◦ T)

 (S ∪ T) ◦ R = (S ◦ R) ∪ (T ◦ R)

 R ◦ (S ∩ T) ⊆ (R ◦ S) ∩ (R ◦ T)

 (S ∩ T) ◦ R ⊆ (S ◦ R) ∩ (T ◦ R)
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Relations

 A counter example for (R ◦ S) ∩ (R ◦ T) ⊆ R ◦ (S ∩ T):

Let R = {(a, x), (a, y)}, S = {(x, α)}, and T = {(y, α)}.

Then, S ∩ T = ∅ and so R ◦ (S ∩ T) = ∅.

But, R ◦ S = {(a, α)} and R ◦ T = {(a, α)}.

Therefore, (R ◦ S) ∩ (R ◦ T) ⊆ R ◦ (S ∩ T).
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Relations

 Notations: If R is a relation on a set A (i.e., R ⊆ A × A),

 R ◦ R = R2

 R ◦ R ◦ ◦ R = Rn

 Recursive definition of Rn

 R0 = E, where E is the identity relation.

 Rn+1 = R ◦ Rn

 Theorem: Let R be a relation on a set A. Then, 

(i) Rm ◦ Rn = Rm+n and

(ii) (Rm)n = Rmn for all m, n ≥ 1.

n
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Relations

 Proof of (i) Rm ◦ Rn = Rm+n (induction on m)

(Basis step)For m = 1

LHS = R1 ◦ Rn = R ◦ Rn = Rn+1 = RHS  (by the recursive def. of Rn)

(Inductive step)

Assume that Rm ◦ Rn = Rm+n.  (Inductive Hypothesis).

To prove that Rm+1 ◦ Rn = Rm+n+1

LHS = (R ◦ Rm) ◦ Rn (by the recursive def. of Rn)

= R ◦ (Rm ◦ Rn) ( ◦ is associative)

= R ◦ Rm+n (by the Inductive Hypothesis)

= Rm+n+1 = RHS (by the recursive def. of Rn)
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Relations

 Proof of (i) Rm ◦ Rn = Rm+n (induction on m)

We have shown that

Rm ◦ Rn = Rm+n → Rm+1 ◦ Rn = Rm+n+1

By this and the basis step, we conclude

Rm ◦ Rn = Rm+n for all m, n ≥ 1.  �

 Proof of (ii) (Rm)n = Rmn (induction on n)

(Basis step)For n = 1

LHS = (Rm)1 = Rm = Rm·1 = RHS

(Inductive step)

Assume that (Rm)n = Rmn.  (Inductive Hypothesis).
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Relations

 Proof of (ii) (Rm)n = Rmn (induction on n)

To prove that (Rm)n+1 = Rm(n+1)

LHS = Rm ◦ (Rm)n (by the recursive def. of Rn)

= Rm ◦ Rmn (by the Inductive Hypothesis)

= Rm+mn (by the theorem just proved)

= Rm(n+1) = RHS

�
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Relations

 Theorem:
Let R be a relation on a finite set A with cardinality n. Then, there 
exist s and t such that Rs = Rt for 0 ≤ s < t ≤ .

 Proof :
From R ⊆ A × A we can see that the number of distinct relations 
on A is |℘(A × A)| = 2|A × A| =     .

Consider the sequence R0, R1, R2,…, .

There are     + 1 relations in this sequence but there are only 
distinct relations on A.

Hence, there must exist s and t such that s ≠ t and 0 ≤ s < t ≤
and Rs = Rt.  �

2

2n

2

2n

2
2n

R
2

2n

2

2n

2

2n
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Relations

 Theorem: Let A be a finite set with cardinality n. Let R be a relation 
on A such that Rs = Rt with s < t. Let p = t – s. Then, 

(1) Rs+i = Rt+i, i ≥ 0.

(2) Rs+pk+i = Rs+i, for all k, i ≥ 0.

(3) If S = {R0, R1, R2,…, Rt–1} then Rq ∈ S, for any q ≥ 0.

 Proof of (1)

(Basis step) For i = 0

Rs = Rt is given.

(Inductive step)

Assume Rs+i = Rt+i.  (Inductive Hypothesis)
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Relations

 Proof of (1)

To prove that Rs+i+1 = Rt+i+1.

LHS = R ◦ Rs+i (by the recursive def. of Rn)

= R ◦ Rt+i (by the Inductive Hypothesis)

= Rt+i+1 (by the recursive def. of Rn)

= RHS

�
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