Relations and Functions

— Part A —




"
Cartesian Product

m Definition:

For sets A, B the Cartesian product, or cross product, of A and B
IS denoted by A x B and equals {(a, b) |a € A, b € B}.

m Ordered pair
For (a,b), (c,d) e AxB, (a,b)=(c,d)iffa=candb=d.
m cf. unordered pair: {a, b}
= (a,b)={a, b}, (a, b)=(b,a)
m Example:
Let A={a, b, c} and B = {x, y}. Then the cross product A x B is
{(u,v)|ueA veB}={(ax), (b x),(cx) @y bOy),Cc Yk

Equivalence Relations & Partitions



m Terminologies:

Let A, A,,..., A, be sets. Then the (n-fold) product of A, A,,..., A,
is denoted by A; x A, x --- x A, and equals

{(a;, a,,...,a)|a € A, 1<i1<n}.

The elements of A; x A, x --- x A_ are called n-tuples, although
we generally use the term triple in place of 3-tuple.

If (a,, ay,..., &), (0, 0y,..., D) € Ap X Ay x oo X A,
then (a,, a,,...,a,) = (b, b,,..., b)) iffa, =Db;, L <i<n.
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m Note:

Cross product is not commutative, i.e., A x B # B x A.

Cross product is not associative, i.e., (AxB) x C=A x (B x C).
AxQD=0

IfA, =A,=--=A,then A, xA, x --- x A, = A",
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m [heorem: For any sets A, B, and C,
Ax(BuC)=(AxB)U(AxC)
BuUC)xA=(BxA)u (CxA)
Ax(BNnC)=(AxB)n(AxC)
BNC)xA=(BxA)n(CxA).

m Proof : Ax(BuC)=(AxB)uU(AxC)
() ToshowAx (BUC)c (AxB)uU (AxC)
Let (X, y) be an element of A x (B U C).

Then, by the definition of cross product,x e Aandy € B u C.
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There are two cases:
mn CASE1l:yeB
Sincexe Aandy e B, (x,y) € AxB.
m CASE2:yeC
SincexeAandyeC(C, (x,y) e AxC.

Since one of the two cases is true, either (x,y) e Ax B or (x,Y) €
A x C.

Hence, by the definition of union of sets, (x,y) € (A x B) U (A x C).
Thatis, (x,¥y) e Ax(BuUC) > (x,y) € (AxB)u (AxC).
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Since (X, y) was an arbitrary element of A x (B u C), we can
conclude that every elements of A x (B U C) is an element of (A x
B) U (A x C).
Therefore, by the definition of a subset
Ax(BuC)c(AxB)u(AxCQC).

(iToshow (AxB)U(AxC)cAx(Bu(C)

From (i) and (ii), we conclude that Ax (B U C) = (A xB) U (A x C).
L
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"

m A formal Proof : Ax (BN C)=(AxB) (AxC)

-

1 (a,b) e Ax(BnC)

2 acAAbe(BNnO) Def. of x 1

3 aeA T 2 I
4 be(BNC) T 2 l,
5 beBaAabeC Def. of N 4

6 beB T 5 4
7 beC T 5 l,
8 acAAbeB T 3,6 g
9 aceAarbeC T 3,7 lq
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H
-
(a,b) e AxB Def. of x

11 (a,b) e AxC Def. of x 9

12 (a,b) e AxBAa(a,b) e AxC T 10, 11 lq
13 (a,b) e AxBNnAxC Def. of n 12 l,
14 (a,b) e Ax (BN C) CP 1,13

—> (@, b) e AxBnAxC
15 (Vy)(a,y) e Ax(BnC) UG 14

—>(@,y) e AxBnAxC
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-

16 (VX)(VY) (X,y) € Ax (B C)
—> X,y) e AxBnAxC

17 Ax(BNC)cAxBnAxC Def. of 16
18 (a,b) e AxBNnAxC AP
(a,b) e AxBnAxC cp

—>(a,b) e Ax(BnC)

AxBNAxCcAx(BNC) Def. of c

Ax(BNnC)=AxBnAxC Def. of =
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Relations

m Definitions:
Let A and B be sets. Then, any subset of A x B is called a relation
between A and B.
Any subset of A x A is called a (binary) relation on A.
If A, A,,..., A are setsthenany Rc A; x A, x --- x A Is an n-ary
relation on A, A,,..., A,.
Let R be a binary relation between a set A and a set B. Then, the
domain of R, designated by ® (R), is
D(R) ={x|(x,y) € R},
and the range of R, designated by ®(R), Is
R(R)={y|(xy) € R}.
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m Examples:

LetA={a,b,cand B={x,y}. fRcAxBandR={(b,y), (c,y)},
then ®(R) ={b, c} and ®(R) = {y}.

IfR={(x,y)|x*+y?<1}, then ®(R) ={x|-1<x<1}.
IfR={(x,y) | x+y<1}, then ®(R)={x|x € R}.

Nan 1
N 1
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m [Theorem: Let S and R be two binary relations. Then,
D(RUS)=D(R)U D(S)
R(R U S)=&k(R) U K(S)
D(RNS)c D(R) N D(S)
R(RMNS) = R(R) N R(S)

m A counter exampleforo(R)ynd(S)cd(RNYS):
Let R={(x,y)} and S = {(x, 2)}.
Then, ®(R) ={x}, ©(S) = {x}, and ® (R) n ©(S) = {x}.
But, RnS=Jandso ®(RnS) =J.
Therefore, D(R) " D (S) £ D(RNYS).
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m Note:
For R — A x B, the number of relations between sets A and B is
| o (A x B)| = 2/AxBl = 2IAHBI,
& 1s a relation : the smallest relation.
The universal relation between sets A and B is A x B.

R=AxB-R.

m Definition:

If R Is a relation between sets A and B then the converse or
inverse of R, designated by R¢ or R, is given by the following:

Re={(y,x) [{(x,y) € R}.
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m [Theorem: Let R and S be two relations between the sets A and B.
Then,

(R =R
(RuUS)t=ReuU S°
(RN S)t =R S°

(R)y = R°
D (R) = R(R)
R(R) = D(R)

If R < Sthen R® < S°
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m Matrix Representation of a Relation

LetA={a, b, c}, B={x vy}, and R={(a,y), (b, X)}. Then the matrix
representations of R, R, and R¢ are the followings:

01 Lo 010
)
M,=|1 0 M.=l0 1 M. =(M,) =L ) o}
L O_ _1 |
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m Definition:

Let A, B, and C be sets. Let R be a relation between A and B, and
S be a relation between B and C. Then the composition of R and
S, denoted by R » S or RS, is defined as follows:

ReS={(x,2)|(X,y) € Rand (y, z) € S}.

A x,y)eR / B (y,2) € S C

x}XRY\y/ySZ\z
N_ _/ XReSz
(X, 2) € ReS
ReS
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m Caution: The composition of relations is not commutative.
ReS#S°R

m Definition:

The identity relation on a set A, denoted by E,, is defined as
follows:

E,={(a,a)|a e A}

m Note: For any relation R on a set A,
ReE,= E,°R=R
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m Example:

A={a,b,c}, B={«a, £}, C={x,y, 1z}
R={(a, B, (b, 9}, S={(5x), (5 2)}
R-S={(a, x), (a,2)}

Matrix representations:

(0 1 0 0 0 1 00
M.=|1 0 M3=L 0 1} Mg =|0 1 0
0 0 0 0 1
(1 0 1]
Mrs=|0 0 0|=M;-M; (Note: +asvand - as A)
0 0O
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m Theorem: LetR, S and T be three relations. Then,
(ReS)eT=R°(S°T)
Ro(SUT)=(R°S)U(R-T)
(SUT)°R=(S°R) U (T*R)
Re(SNAT)c(ReS)n(R°T)
(SAT)°Rc(S°R) N (T°R)
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m A counter example for(R°S)n(R°T)c R (SN T):
LetR={(a,x), (&, y)}, S={(x, @)}, and T ={(y, o)}.
Then,SNnT=JandsoR°(SNT)=3.

But, R S={(a, ®)}and R~ T ={(a, a)}.
Therefore, (R°S)Nn(RT)&R (SN T).
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m Notations: If R is a relation on a set A (i.e., R c A x A),
RoR=R?
RoRo..-oR=R"

m Recursive definition of R
RY = E, where E is the identity relation.
RM1=R o R0
m [heorem: LetR be arelation on a set A. Then,
() RM~ R"=R™" and
(i) (R™M"=R™ for all m, n > 1.
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m Proof of (i) R™"> R"=R™" (induction on m)
(Basis step)Form =1
LHS =Rl!-R"=R - R"=R™1=RHS (by the recursive def. of R")
(Inductive step)
Assume that R™ - R" = R™", (Inductive Hypothesis).
To prove that RmM*1 o R = Rm+n+1
LHS = (R R™M) - R" (by the recursive def. of R")
=R°(R™=R") (- °is associative)
=R+ R™" (by the Inductive Hypothesis)
= Rm1l = RHS (by the recursive def. of R")
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We have shown that
RM o RN = RM+N _y RM+1 o0 RN = RM+n+1
By this and the basis step, we conclude
RmoeRM=R™"forallm,n>1. [
m Proof of (i) (R™"=R™ (induction on n)
(Basis step)Forn=1
LHS = (RM!=R™=RM™1=RHS
(Inductive step)
Assume that (R™)"=R™. (Inductive Hypothesis).
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To prove that (RMn+1 = Rm(n+1)

LHS =R™ < (RM" (by the recursive def. of R")
=R™e° R™ (by the Inductive Hypothesis)
= R™mn  (py the theorem just proved)
= Rn(*1) = RHS
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m Theorem:

Let R be a relation on a finite set A with cardinality n. Then, there
exist s and t such that Rs=Rtfor0<s<t<2".

m Proof :
From R — A x A we can see that the number of distinct relations
onAis | (A x A)| = 2AxA = 2"
Consider the sequence R%, R%, R?,..., RZ".
There are 2" + 1 relations in this sequence but there are only
2" distinct relations on A.

Hence, there must exists and t suchthatsztand 0 <s<t< o
and RS=Rt, [
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m [Theorem: Let A be a finite set with cardinality n. Let R be a relation
on A suchthat RS =Rtwiths<t. Letp=t-s. Then,

(1) Rsti=R% j>0.
(2) Rstek+i=RsH for all k, i > 0.
(3) IfS={R% R} R?...,R"} thenRY € S, for any g > 0.
m Proof of (1)
(Basis step) Fori=0
RS =Rtis given.
(Inductive step)
Assume R = R™, (Inductive Hypothesis)

Equivalence Relations & Partitions 27



To prove that Rs**1 = Rt+i+1,

LHS =R 2 Rs*'  (by the recursive def. of R")
=R o R™ (by the Inductive Hypothesis)
= R**1 (by the recursive def. of R")
= RHS
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