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Equivalence Relations

 Definition:
A binary relation R on a set is called an equivalence relation if it 
is reflexive, symmetric, and transitive. 

 Example:
W: set of all words in English dictionary

R: “has the same first letter as” relation

Claim: R is an equivalence relation on the set A.

(∀w) w ∈ W → (w, w) ∈ R

(∀w1)(∀w2) (w1, w2) ∈ R → (w2, w1) ∈ R

(∀w1)(∀w2)(∀w3) (w1, w2) ∈ R ∧ (w2, w3) ∈ R → (w1, w3) ∈ R
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Equivalence Relations

 More examples:
 EA for a set A is an equivalence relation.

 A × A is an equivalence relation.

 How many relations on A are equivalence relations?

 Rk = {(x, y) | x, y ∈ Z,  x – y = n ⋅ k,  k ∈ Z+,  n ∈ Z}

We say “x and y are equivalent modulo k.”

When k = 3,

(7, 7) ∈ R3

(7, 4) ∈ R3 (7 – 4 = 1 ⋅ 3) → (4, 7) ∈ R3 (4 – 7 = (– 1) ⋅ 3)

(4, 10) ∈ R3 ∧ (10, 19) ∈ R3 → (4, 19) ∈ R3



Equivalence Relations & Partitions 4

Equivalence Relations

 Theorem:
If R1 and R2 are two equivalence relations on a set A then R1 ∩ R2

is an equivalence relation.

 Proof :
We need to show that R1 ∩ R2 is reflexive, symmetric, and 
transitive.

(Reflexive)

Let a ∈ A. We must show that (a, a) ∈ R1 ∩ R2.

Since R1 and R2 are equivalence relations, they must be reflexive 
and so (a, a) ∈ R1 and (a, a) ∈ R2.
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Equivalence Relations

 Proof :
Therefore, (a, a) ∈ R1 ∩ R2 and R1 ∩ R2 is reflexive.

(Symmetric)

Let (a, b) ∈ R1 ∩ R2. Then, (a, b) ∈ R1 and (a, b) ∈ R2.

Since R1 and R2 are symmetric (b, a) ∈ R1 and (b, a) ∈ R2.

Therefore, (b, a) ∈ R1 ∩ R2 and R1 ∩ R2 is symmetric.

(Transitive)

Left as an exercise.

�
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Equivalence Relations

 A counter example for R1 ∪ R2:
 A = {a, b, c}

 R1 = {(a, a), (b, b), (c, c), (a, b), (b, a)} is an equivalence relation

 R2 = {(a, a), (b, b), (c, c), (a, c), (c, a)} is an equivalence relation

 R1 ∪ R2 = {(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a)}

is not transitive, and so is not an equivalence relation.

 Theorem:
Let R be a non-empty relation on a set A. Then,

 tsr(R) is an equivalence relation.

 If R′ is any equivalence relation such that R ⊆ R′, then tsr(R) ⊆ R′.
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Equivalence Classes

 Definition:
Let R be an equivalence relation on a set A. For each x ∈ A, the 
equivalence class of x with respect to R, denoted by [x]R is 
defined by

[x]R = { y ∈ A | (x, y) ∈ R}.

 Example:
W: set of all words in English dictionary

R: “has the same first letter as” relation

[dog]R: set of all the words that start with the letter ‘d’
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Equivalence Classes

 Theorem:
Let R be an equivalence relation on a set A. Then,

[a]R = [b]R iff (a, b) ∈ R

(Ex: [dog]R = [dummy]R)

 Proof :
(if part)

Assume (a, b) ∈ R.

Let x ∈ [a]R.

Then, (a, x) ∈ R and (x, a) ∈ R because R is an equivalence 
relation and thus symmetric.
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Equivalence Classes

 Proof :
From (x, a) ∈ R and (a, b) ∈ R, we have (x, b) ∈ R because R is an 
equivalence relation and thus transitive.

Then, (b, x) ∈ R because R is an equivalence relation and thus 
symmetric. So, we have x ∈ [b]R.

Therefore, [a]R ⊆ [b]R.

We can similarly show that [b]R ⊆ [a]R.

Therefore, [a]R = [b]R.
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Equivalence Classes

 Proof :
(only if part)

Assume [a]R = [b]R.

Let x ∈ [a]R. Then, x ∈ [b]R.

Then, (a, x) ∈ R and (b, x) ∈ R.

Since (b, x) ∈ R and R is symmetric, we have (x, b) ∈ R.

From (a, x) ∈ R and (x, b) ∈ R, (a, b) ∈ R because R is transitive.

�
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 Theorem:
Let R be an equivalence relation on a set A. Then,

1. a ∈ [a]R

2. Either [a]R = [b]R or [a]R ∩ [b]R = ∅ but not both

3.

 Example: English dictionary
 dog ∈ [dog]R

 [dog]R = [dummy]R [dog]R ∩ [cat]R = ∅

 (set of all words)

Equivalence Classes

Aa RAa
=∪

∈
][

Wa RAa
=∪

∈
][
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Equivalence Classes

 Proof of 2 :
Suppose [a]R ≠ [b]R and [a]R ∩ [b]R ≠ ∅.

Let x be an element of the nonempty set [a]R ∩ [b]R.

Then, x ∈ [a]R and x ∈ [b]R and so (a, x) ∈ R and (b, x) ∈ R.

But, (x, b) ∈ R because R is symmetric.

From (a, x) ∈ R and (x, b) ∈ R we get (a, b) ∈ R because R is 
transitive.

Then, [a]R = [b]R, which is a contradiction.   �
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Equivalence Classes

 Definition:
Let R be an equivalence relation on a set A. The quotient set of A
modulo R, denoted by A/R, is defined by

A/R = {[x]R | x ∈ A}

 Example:
 W: English dictionary R: has the same first letter as

W/R = {{all words starting with a}, {all words starting with b}, . . . 
. . . , {all words starting with z}}

W/R: · · ·
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Equivalence Classes

 Example:
 A = {a, b, c}

 R = {(a, a), (b, b), (c, c), (a, c), (c, a)}

 A/R = {{a, c}, {b}}
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Partitions

 Definition:
Let A be a nonempty set and let π be a collection of nonempty 
subsets of A such that

1.If X, Y ∈ π and X ≠ Y then X ∩ Y = ∅

2.

then π is called a partition of A.

 Note:
 ∅ ∉ π and π ⊂ ℘(A)

 If only 2 holds, then it is called a cover.

AX
X

=∪
∈π
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Partitions

 Example:

{A1, A2}: partition

A1 A2 B1 B2

{B1, B2}: cover, not a partition

block
A B

 Definition:
 Let π be a partition on a set A. If π is finite then |π| is called the 

rank of the partition A.
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Partitions

 Theorem:
If R is an equivalence relation on a set A, then A/R is a partition of A.

 Proof :
Let X, Y ∈ A/R.

Then, X and Y are equivalence classes.

We know that (1) either X = Y or X ∩ Y = ∅ and (2)                  .

This implies that A/R is a partition of A.

�

AX
RAX

=∪
∈ /
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Partitions

 Definition:
Let π be a partition on a set A. The relation induced by the 
partition π, denoted by Rπ, is defined as

Rπ = {(x, y) | ∃S (S ∈ π ∧ x ∈ S ∧ y ∈ S)}

 Example:
 A = {a, b, c, d, e, f, g}

 π = {{a, b, c}, {d, e}, {f, g}}

 Rπ = {(a, a), (b, b), . . . , (g, g), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b), 
(d, e), (e, d), (f, g), (g, f)}
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Partitions

 Theorem:
Let Rπ be the relation induced by a partition π on a nonempty set 
A. Then, 

1. Rπ is an equivalence relation.

2. A/Rπ = π.
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Partitions

 Theorem:
Let R be an equivalence relation on a nonempty set A and let π
be a partition on the set. Then,

R = Rπ iff π = A/R

R

π Rπ

A/R

A R = Rπ iff π = A/R
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Partitions

 Theorem:
There exists a one-to-one correspondence between the set of all 
equivalence relations on a nonempty set A and the set of all 
partitions on A.

set of all equivalence 
relations on A

set of all partitions 
on A

R

R′ A/R′

A/R
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Partitions

 Definition:
Let π and π′ be two partitions on a nonempty set A. Then π′ is 
said to refine π (π′ is a refinement of π) if every block of π′ is a 
subset of some block of π.

 Example:
 A = {a, b, c, d, e, f, g}

 π = {{a, b, c}, {d, e}, {f, g}}

 π′ = {{a, b}, {c}, {d, e}, {f, g}}

 π′ is a refinement of π
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Partitions

 Note:
 π0 = {{a, b, c, d, e, f, g}}

Every partition is a refinement of π0.

 π∞ = {{a}, {b}, {c}, {d}, {e}, {f}, {g}}

π∞ is a refinement of every partition.

 A partition refines itself.

 Definition:
If a partition π′ refines a partition π and if π′ ≠ π, then π′ is called a 
proper refinement of π. 
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Partitions

 Definitions:
 Let π1 and π2 be two partitions on a nonempty set A. π1 ⋅ π2 is a 

partition on A that refines both π1 and π2 and if π′ is another 
partition that refines π1 and π2 then π′ refines π1 ⋅ π2. 

 Let π1 and π2 be two partitions on a nonempty set A. π1 + π2 is a 
partition on A that is refined by both π1 and π2 and if π′ is another 
partition that is refined by π1 and π2 then π′ is refined by π1 + π2.
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Partitions

 Example:
 π1 = {{a, b, c}, {d, e}, {f, g}}

 π2 = {{a, b, c, d}, {e}, {f, g}}

 π1 ⋅ π2 = {{a, b, c}, {d}, {e}, {f, g}}

 π3 = {{a, b}, {c}, {d}, {e}, {f, g}}

π3 ≠ π1 ⋅ π2

π3 is a proper refinement of π1 ⋅ π2.

 π1 + π2 = {{a, b, c, d, e}, {f, g}}
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Partitions

 Theorem:
 The relation “refines” on the set of all the partitions on a 

nonempty set is reflexive, antisymmetric, and transitive.

 Theorem:
 Let π1 and π2 be two partitions on a nonempty set A. Then



 .

 Corollary:
Given two partitions π1 and π2 on a nonempty set A, there is a 
unique π1 ⋅ π2 and a unique π1 + π2.

)/(ππ
21 ππ21 RRA ∩=⋅

)(/ππ
21 ππ21 RRtA ∪=+
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