

Practices of Bio-Signal Instrumentation

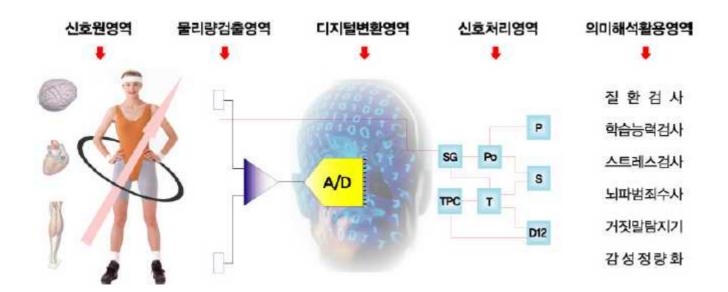
http://club.cyworld.com/medielec

강륭영동대학 의료전자과 Dept. of Bio-Medical Engineering , Gangneungyeongdong College

植

- 1 강의소개
- 2 EMG 측정
- 3 EEG 측정
- 4 ECG 측정
- 5 ECG & PPG 측정
- 6 호흡측정
- 기 피부전기전도 측정

- 8 반응시간 측정
- 9 폐기능 검사
- Bio-Feedback(생체자기제어)
- 11 유산소 운동
- 12 혈압 측정
- 13 심음 측정
- 14 척수 반사운동 측정


강의소개

- Text Book
 - ① Printed Matter(By Park Jun Sik)
- Reference Book
 - ① Experimental Laboratory Physiology: BioPac Laboratory Exercises
 - ② 의용생체계측 개론 여문각
 - ③ 생체신호처리 여문각
- 수업시간: 2-0-4
- 성적 산출 방법
 - 출석 20, 중간고사: 30, 기말고사: 30, 과제: 20
- Reference Site: http://club.cyworld.com/medielec
- 연락처
 - 연구실: 연구동 305호(T.610-0357/019-306-1365

생체신호개요

- 생체신호: 관찰하고자 하는 생체기관으로부터 얻어진 신호
- 생체신호 정보획득과정(예)
 - 손가락 감각에 의해 심박수 감지
 - CT와 같은 첨단 의료장비에 의해 인체 내부 조직의 구조를 분석

<생체 신호 처리 과정에 대한 흐름도>

생체신호개요

• 신호원 영역

- 신호가 발생하는 영역
- 인체의 경우 다양한 방식으로 외부에 신호를 출력하는 시스템(뇌, 심장, 근육 등)

• 물리량 검출영역

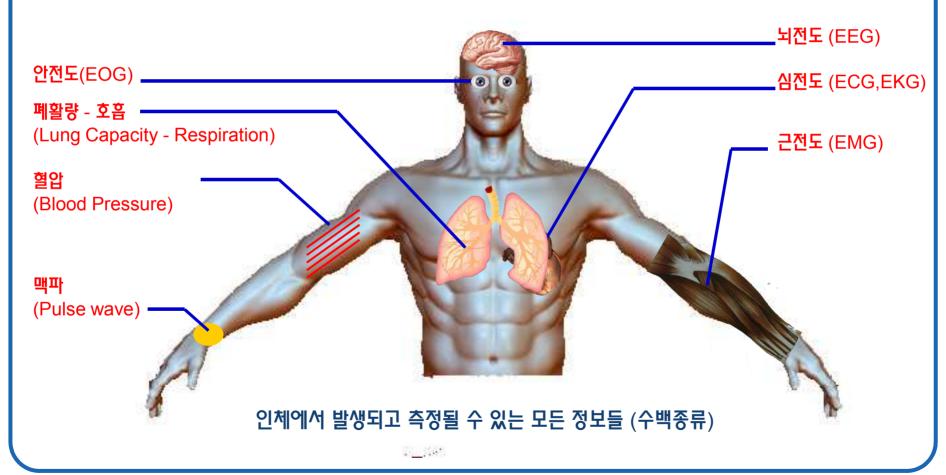
- 발생된 신호를 전기적인 신호로 변환 → 목표 신호를 추출하는 영역
- 센서(전극) 필요
- 미약한 신호를 증폭, 잡음 제거 과정 필요

• 디지털 변환 영역

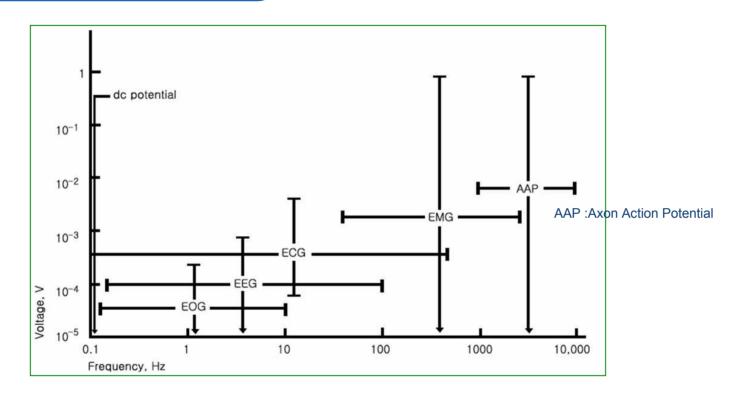
- 물리량 검출 영역에서 획득한 아날로그 신호를 디지털 신호로 변환하는 영역

• 신호처리 영역

- 디지털 신호를 컴퓨터로 처리하는 영역
- 실시간 표시, 데이터처리, 주파수분석, 비선형계산 등


• 의미해석 활용 영역

- 신호 처리된 정보를 분석, 응용 및 활용하는 영역


생체신호의 종류

▷ 대표적인 생체신호

생체신호의 주파수 분포

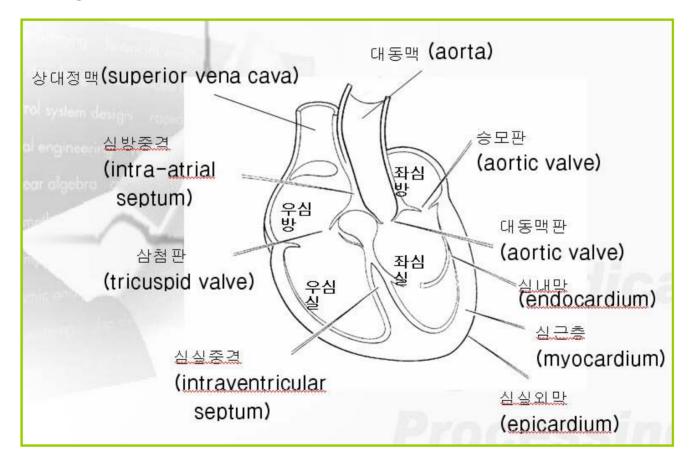
- 1. 주요한 생체 신호인 EOG, EEG, ECG, EMG 는 ~ 10[KHz] bandwidth를 갖는다.
- 2. 각 신호의 voltage 는 수 $[\mu V]$ 에서 수[mV]의 범위를 갖는다.

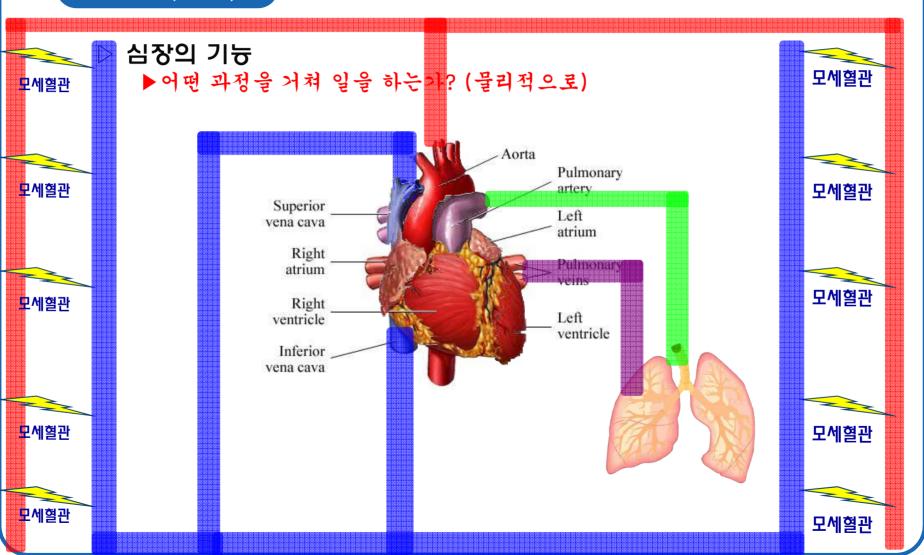
심전도(ECG)

- Electro-Cardio-Gram or EKG
- 심장기능을 알아보는 비관혈적 검사법
- 심방과 심실근에 흥분하고 회복하는 동안 심장에서 발생하는 심기전력을 인체표면, 내면, 심장 표면 등에서 전극을 통해 유도, 증폭과정을 거쳐 시간적 경과에 따라 주기적인 도형으로 기록

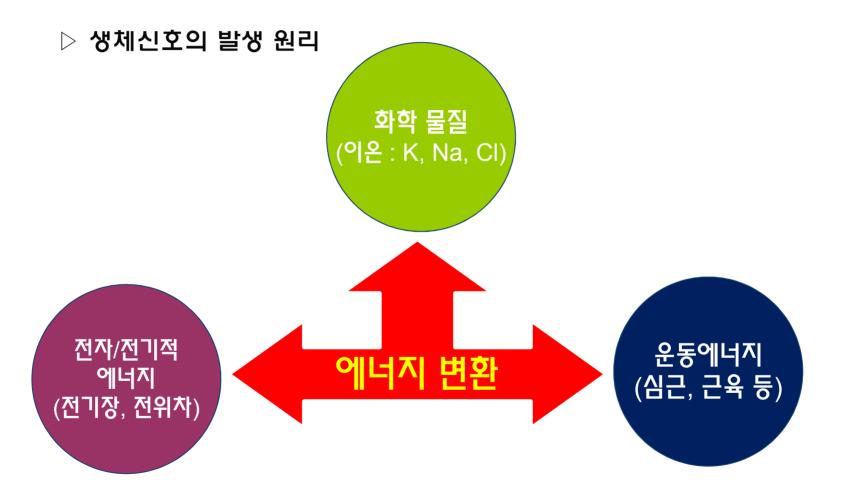
• 자동 진단 장비

Stress Device

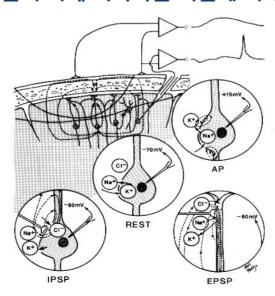



심전도(ECG)

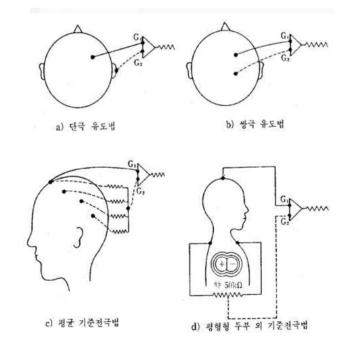
▷ 심장의 구조


심전도(ECG)

Dept. of Bio-Medical Electronics, GangNeung YeongDong College, By Jun-Sik, Park


심전도(ECG)

뇌전도(EEG)


- Electro-Encephalo-Gram
- 뇌파란 ?
 - 머리 표면에서 발생하는 전위
- 근원
 - 흥분 뉴런의 세포막을 투과해 지나가는 이온에 의해 발생

뇌전도(EEG)

- Electro-Encephalo-Gram
- 측정 목표
 - ① Diagnosis Part: 간질, 뇌종양, 뇌염, 뇌혈관장애, 두부왹상 등 판독
 - ② Engineering Part: 감성공학, 로봇공학 등 공학적 측면으로써의 응용
- 측정방법
 - ① 단극유도법
 - ② 쌍극유도법
 - ③ 평균기준 전극법
 - ④ 평형형 두부 외 기준전극법

뇌전도(EEG)

• 뇌파신호 성분 : 1 ~ 60 [Hz]

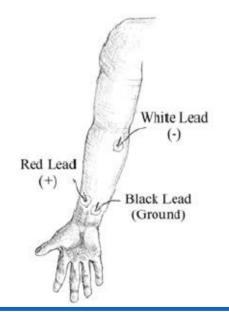
• 뇌파 신호 대역에 따른 의식 상태

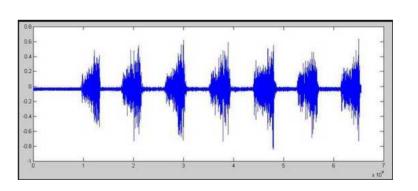
No	Wave Type	BW	Status of Consciousness
1	δ (델타) 파	0.5 ~ 3 Hz	수면 상태
2	♡ 파(세탁)파	4 ~ 8 Hz	멍하고 있거나 수면 상태
3	α (알파) 파	8 ~ 13 Hz	의식을 집중하고 있는 상태
4	β (베탁) 파	14 ~ 30 Hz	긴장 상태
5	y (감마)파	30Hz 이상	흥분 상태

뇌전도(EEG)

- 대표적 응용분야
- Game Device

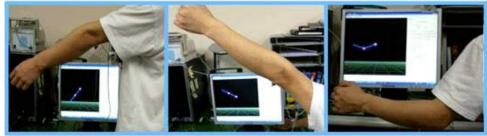
Robot Device


Medical Deice



근전도(EMG)

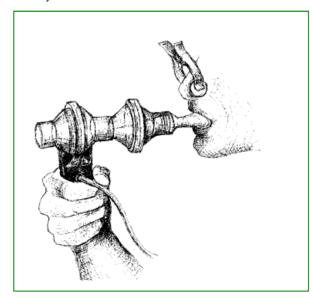
- Electro-Myo-Graphy
- 측정 대상
- 근피로도, 근회복도, 근수축력, 근육 통증 진단 등
- 신호주파수 대역
 - BW : 0 ~ 500 [Hz], 50 ~ 150 [Hz]에 신호가 집중되어 있음
- 측정방법



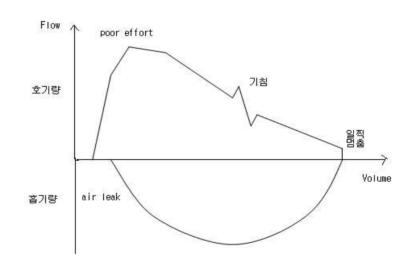
근전도(EMG)

- 4. 대표적인 응용 분약
 - 인공 관절 시스템

인공관절동작시스템

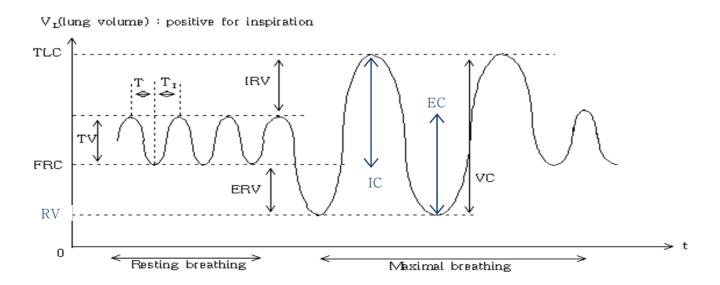

• 방향 제어를 통한 게임 시스템

폐활량(Spirometer)


- 호흡을 통한 폐 기능, 질환 검사 및 수술 전/후 호흡 기능 테스트에 응용
- 임상에서 많이 사용되는 테스트 내용
 - FVC (Forced Vital Capacity): 노력성 폐활량
 - ▶ 최대로 숨을 들이마신 뒤에 최대로 숨을 내쉴 때 허파에서 나오는 공기량
 - SVC (Slow Vital Capacity): 안정 시(평상 시) 폐활량
 - MVV (Maximum Voluntary Ventilation): 최대 자발성 호흡량
- 측정 방법
- 측정 내용에 따라 측정 방법이 다름

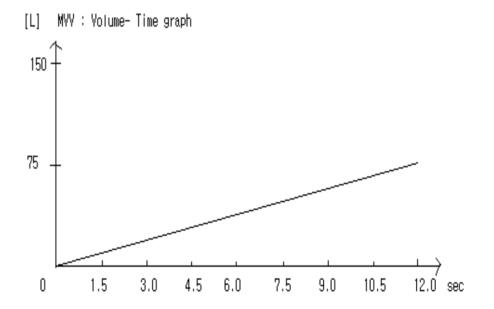
폐활량(Spirometer)

- 측정방법
- ► FVC (Forced Vital Capacity)
 - ❖ 똑바로 서서 측정한다.
 - ❖ 최대한 흡입한다.
 - ❖ 최대한 빠르고 강하게 내쉰다.
 - ❖ 3번 시도하여 적당한 결과를 선택한다.

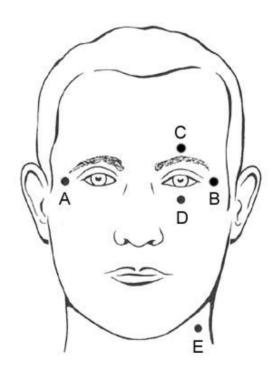

1초간 강제 호기량(FEV1 최대로 숨을 들이마셨다가 강하게 내쉬는 힘)과 강제 폐활량(FVC 흡입할수 있는 최대 공기양)의 비가 70%이하일 때 환자로 규정

※ FEV1(forced expiratory volume): 1초 간 노력성 호기량

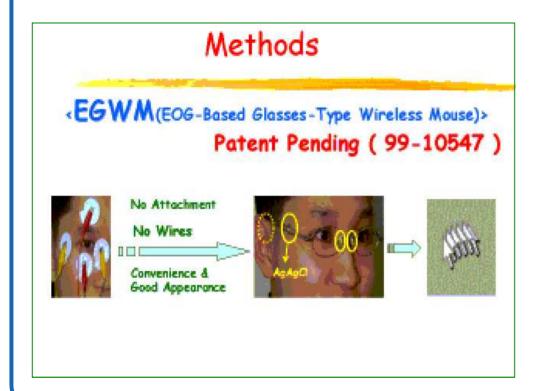
폐활량(Spirometer)


- 측정방법
 - SVC (Slow Volume Capacity)
 - 3회 평상시 호흡 후 최대한 흡기 및 호기
 - 총 폐활량 측정

폐활량(Spirometer)


- 측정방법
 - ► MVV (Maximum Voluntary Ventilation)
 - 최대 노력 환기 량
 - 12Sec 동안 시행하여 표시

안전도(Electro-Oculo-Gram)


- 개요
- 눈의 움직임에 따라 발생하는 전기적 신호 측정
- 안과학의 진단이나 눈의 움직임을 적용한 로봇 제어 등의 분야에 응용
- 측정방법
- Electrodes A and B: 눈의 수평 움직임을 측정
- Electrodes C and D: 눈의 수직 움직임을 측정
- Electrode E는 Ground

안전도(Electro-Oculo-Gram)

- 응용분약
- Input Device : Wireless Mouse

• 전동휠체어

혈압(Blood Pressure)

- 개요
 - 인체의 혈압을 측정, 고혈압/저혈압 등의 진단에 응용.

분류	측정 방법	종류	비고
	혈압을 측정하기 위 해, 인체 내부로 특정 물체를 삽입하지 않 고, 인체 외부에서 측 정하는 방식	촉진법	압력을 가한 후, 맥박을 손으로 측정
			정보) Systolic
NIBP (Non		청진법	압력을 가한 후, 맥박을 소리로 측정
			정보) Systolic, Diastolic
Invasive Blood		초음파	인체 내부로 초음파 투과
Pressure)			정보)Systolic, mean, Diastolic
		Oscillometric	압력 센서를 이용한 계측법
			정보)Systolic, mean, Diastolic
IBP	인체 내부로 특정 물 체(바늘)을 삽입하여 측정하는 방식		정보)Systolic, mean, Diastolic

혈압(Blood Pressure)

- 대표적인 응용분약
 - Digital **혈압계**

SunTech ABP

- ABP(ambulatory blood pressure monitor)
 - 평상 시 활동 중 24시간 혈압 측정

맥파(Pulse Wave)

- 개요
 - 심장이 수축할 때마다 심장으로부터 대동맥을 통하여 전신에 혈액이 공급됨
 - 이때, 대동맥에 압력의 변동이 일어나고, 이 변동은 손과 발의 말초 소동맥까지 전달
 - 이 변동을 파형으로 표현한 것
- 측정방법(광전식 용적 맥파계)
 - 근적외선을 피검부위에 조사하여 **헤모글로빈에 흡수되지 않고**, 투과된 투과광 또는 반사광으로 혈액량의 변동 검출.
 - ※ 헤모글로빈: 산소 운반을 담당하는 혈색소 (적혈구 내에 존재하는 색소 단백질)
 - ※ 적혈구: 혈액의 주요 성분 중의 하나로 산소 운반을 위해 특화된 혈구

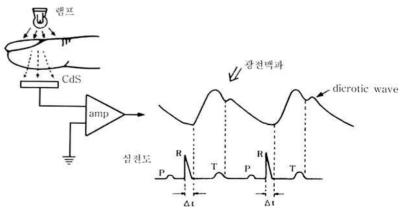
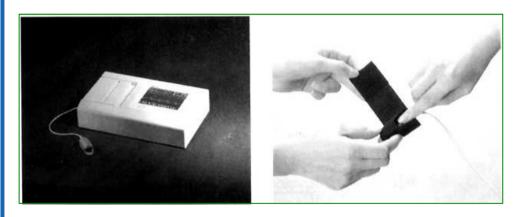
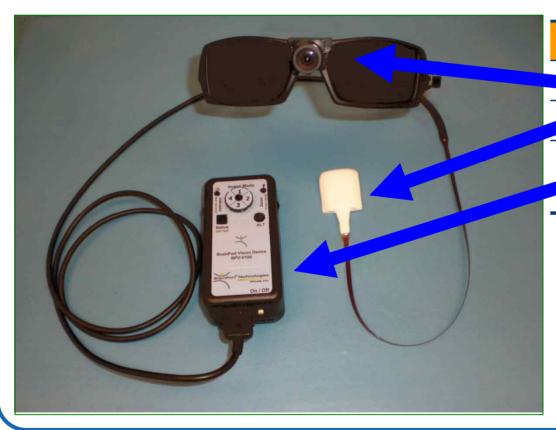



그림 3-4. 광전식 plethysmography 및 맥파 전파속도 측정

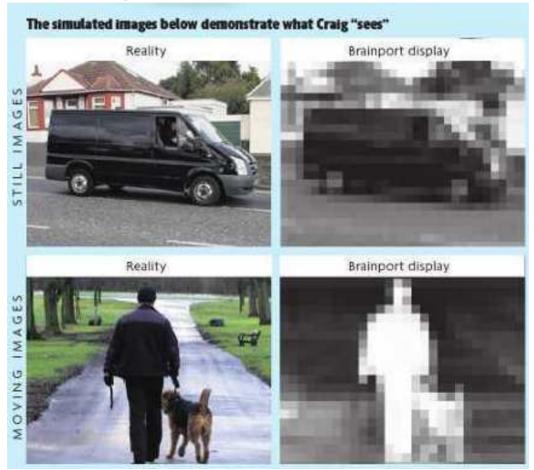
맥파(Pulse Wave)

- 응용분약
 - 광전식 맥파계


SpO2

Brain - Port

- 개요
 - 혀로 사물을 본다. 시작장애인을 위한 "혁명적 디바이스"



	구분	-
	입력장치	카메라
1	출력장치	Electrodes
	중앙처리	Microcontroller
1	장치	

Brain - Port

• Brain-Port로 바라본 세상

www.gyc.ac.kr

